STANDARDS DOCUMENT Units of Measure To Be Used In Air And Ground Operations 1st Edition May 2019 Published by: Civil Aviation Authority of Fiji Private Mail Bag, NAP 0354 Nadi International Airport Fiji www.caaf.org.f Copyright © 2019 CAAF ## STANDARDS DOCUMENT # Units of Measure To Be Used In Air And Ground Operations **Civil Aviation Authority of Fiji** Private Mail Bag, NAP 0354 Nadi International Airport Copyright © 2024 CAAF Copy number: Electronic Copy This Standard Document is subject to the amendment service: b Yes o No Copy Holder: MASTER COPY Organisation: <u>Civil Aviation Authority of Fiji</u> Date of Issue: 31st May 2019 Units of Measure To Be Used In Air And Ground Operations #### **PREFACE** #### General Fiji's National Aviation Law consists of a three tier or triple system regulatory system, comprising Acts, Regulations and Standards Documents; the purpose of which is to ensure, where deemed appropriate, compliance and conformance with ICAO Standards and Recommended Practices (SARPS). The 'three tier' or 'triple system' regulatory system represents Fiji's Primary Legislation System and Specific Operating Regulations to meet Critical Elements CE1 and CE2 of ICAO's Eight Critical Element of a safety oversight system Standards Documents (SD) are issued by the Civil Aviation Authority of Fiji under the provision of Section 14 (3) (b) of the Civil Aviation Authority Act 1979 (CAP 174A) Where appropriate, the SD also contains technical guidance (Critical Element CE5) on standards, practices, and procedures that are acceptable to the Authority. Notwithstanding the above, and where specifically indicated in this Standards Document that such a provision is available, consideration may be given to other methods of compliance that may be presented to the Authority provided they have compensating factors that can demonstrate a level of safety equivalent to or better than those prescribed herein. Accordingly, the Authority will consider each case based on its own merits holistically in the context of and relevancy of the alternative methods to the individual applicant. When new standards, practices, or procedures are determined to be acceptable, they will be added to this document. #### **Purpose** This Standards Document – Units of Measure is issued by the Civil Aviation Authority of Fiji pursuant to Section 6(4)(c) and 14(3)(b) of the Civil Aviation (Reform) Act 1999. This Document is intended for use by CAAF, applicants for, and Organizations specifying the use of a standardized system of units of measurement in Fiji international and domestic civil aviation air and ground operations. ## **Change Notice** This Standards Document has been developed pursuant to the Authority's obligation to provide oversight on certified operators and their personnel, as well as the operator's obligation to comply with standards notified by the Authority and is the means by which such notification is given. THERESA LEVESTAM CHIEF EXECUTIVE 01 June 2022 i Units of Measure To Be Used In Air And Ground Operations #### AMENDMENT RECORD The following space is provided to keep a record of all amendments. | Amendment No. | Effective
Date | Entered
By | Date
Entered | | |--|-------------------|---------------|-----------------|--| | Amendment no. 1 incorporated in this edition | | | | | | 2 | 20/08/19 | FT | 20/08/19 | | | 3 | | | | | | 4 | | | | | | 5 | | | | | | 6 | | | | | | 7 | | | | | | 8 | | | | | | 9 | | | | | | 10 | | | | | | 11 | | | | | | 12 | | | | | | 13 | | | | | | 14 | | | | | | 15 | | | | | | 16 | | | | | | 17 | | | | | | 18 | | | | | | 19 | | | | | | 20 | | | | | | 21 | | | | | | 22 | | | | | | 23 | | | | | | 24 | | | | | | 25 | | | | | | Amendment No. | Effective
Date | Entered
By | Date
Entered | |---------------|-------------------|---------------|-----------------| | 26 | | | | | 27 | | | | | 28 | | | | | 29 | | | | | 30 | | | | | 31 | | | | | 32 | | | | | 33 | | | | | 34 | | | | | 35 | | | | | 36 | | | | | 37 | | | | | 38 | | | | | 39 | | | | | 40 | | | | | 41 | | | | | 42 | | | | | 43 | | | | | 44 | | | | | 45 | | | | | 46 | | | | | 47 | | | | | 48 | | | | | 49 | | | | | 50 | | | | From time to time the Authority will issue amendments to the requirements stipulated in this publication. This will be done in the form of 'Notice of Amendments' including an attachment 'Notification of Approval/Disapproval' of all or part of the proposed amendment. The Amendments will also be accessible through CAAF website. 20 June 2019 ii ## Units of Measure To Be Used In Air And Ground Operations ## **Table of Contents** | PREF | FACE | i | |-------|--|----| | Purpo | oose | i | | Chan | nge Notice | i | | AME | ENDMENT RECORD | ii | | Histo | orical Summary of Amendments | iv | | Chap | pter 1 – Definitions | 1 | | Chap | pter 2. Applicability | 4 | | 2.1 | Applicability | 4 | | Chap | pter 3. Standard Application of Units of Measurement | 5 | | 3.1 | SI units 5 | | | 3.2 | Non-SI units | 6 | | 3.3 | Application of specific units | 6 | | Chap | pter 4. Termination of Use of Non-Si Alternative Units | 12 | | Appe | endices to Standards-Units of Measure | 13 | | Appe | endix A. Development of the International System of Units (Si) | 13 | | 1. | Historical background | 13 | | 2. | International Bureau of Weights and Measures | 13 | | 3. | International Organization for Standardization | 15 | | Appe | endix B. Guidance on the Application of the SI | 16 | | 1. | Introduction | 16 | | 2. | Mass, force and weight | 18 | | 3. | Energy and torque | 19 | | 4. | SI prefixes | 19 | | 5. | Style and usage | 22 | | Appe | endix C. Conversion Factors | 25 | | 1. | General25 | | | 2. | Factors not listed | 25 | | Appe | endix D. Coordinated Universal Time | 33 | | Appe | endix E. Presentation of Date and Time in All-Numeric Form | 34 | | 1. | Introduction | 34 | | 2. | Presentation of date | 34 | | 3. | Presentation of time | 34 | | 4. | Combination date and time groups | 35 | Units of Measure To Be Used In Air And Ground Operations #### **Historical Summary of Amendments** The Civil Aviation (Amendment) Promulgation 2008 Section 6(4)(c) and 14(3)(b) requires the Authority to produce standards for the establishment and use of units of measurement in Fiji international civil aviation air and ground operations. A draft version of Standard Document-Units of Measure to be used in Air and Ground Operations (SD-UMAGO, 1st Edition dated February 2019) was developed and circulated internally for comments. SD-UMAGO, details the use of units of a standardized system of units of measurements to be used in Fiji air and ground operations and augments published procedures and processes. | Amendment | Source(s) | Subject(s) | Effective Date | |-------------------------|-----------|---|---------------------------| | 1 st Edition | CAAF | Standards Document – Units of Measure to be used in Air and Ground Operations (SD- UMAGO) | 31 st May 2019 | 20 June 2019 iv Units of Measure To Be Used In Air And Ground Operations ## Chapter 1 – Definitions When the following terms are used in this Standards Document concerning the units of measurement to be used in all aspects of Fiji international and domestic civil aviation air and ground operations, they have the following meanings: **Ampere** (A). The ampere is that constant electric current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in a vacuum, would produce between these conductors a force equal to 2×10^{-7} newton per metre of length. Becquerel (Bq). The activity of a radionuclide having one spontaneous nuclear transition per second. **Candela (cd).** The luminous intensity, in the perpendicular direction, of a surface of 1/600 000 square metre of black body at the temperature of freezing platinum under a pressure of 101 325 newtons per square metre. **Celsius temperature (t°c).** The Celsius temperature is equal to the difference t° $_{C}$ = $T - T_{0}$ between two thermodynamic temperatures T and T_{0} where T_{0} equals 273.15 kelvin. Coulomb (C). The quantity of electricity transported in 1 second by a current of 1 ampere. Degree Celsius (°C). The special name for the unit kelvin for use in stating values of Celsius temperature. **Farad (F).** The capacitance of a capacitor between the plates of which there appears a difference of potential of 1 volt when it is charged by a quantity of electricity equal to 1 coulomb. Foot (ft). The length equal to 0.304 8 metre exactly. Gray (Gy). The energy imparted by ionizing radiation to a mass of matter corresponding to 1 joule per kilogram. **Henry (H).** The inductance of a closed circuit in which an electromotive force of 1 volt is produced when the electric current in the circuit varies uniformly at a rate of 1 ampere per second. *Hertz (Hz).* The frequency of a periodic phenomenon of which the period is 1 second. **Human performance.** Human capabilities and limitations which have an impact on the safety and efficiency of aeronautical operations. **Joule (J).** The work done when the point of application of a force of 1 newton is displaced a distance of 1 metre in the direction of the force. *Kelvin (K).* A unit of thermodynamic temperature which is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water. *Kilogram (kg).* The unit of mass equal to the mass of the international prototype of the kilogram. *Knot (kt).* The speed equal to 1 nautical mile per hour. Litre (L). A unit of volume restricted to the measurement of liquids and gases which is equal to 1 cubic decimetre. **Lumen (Im).** The luminous flux emitted in a solid angle of 1 steradian by a point source having a uniform intensity of 1 candela. Lux (lx). The
illuminance produced by a luminous flux of 1 lumen uniformly distributed over a surface of 1 square metre. Metre (m). The distance travelled by light in a vacuum during 1/299 792 458 of a second. 20 June 2019 Page **1** of **35** Units of Measure To Be Used In Air And Ground Operations **Mole (mol).** The amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon-12. Note. — When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles or specified groups of such particles. Nautical mile (NM). The length equal to 1 852 metres exactly. **Newton (N).** The force which when applied to a body having a mass of 1 kilogram gives it an acceleration of 1 metre per second squared. **Ohm** (Ω). The electric resistance between two points of a conductor when a constant difference of potential of 1 volt, applied between these two points, produces in this conductor a current of 1 ampere, this conductor not being the source of any electromotive force. Pascal (Pa). The pressure or stress of 1 newton per square metre. **Radian** (rad). The plane angle between two radii of a circle which cut off on the circumference an arc equal in length to the radius. **Second** (s). The duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom. **Siemens (S).** The electric conductance of a conductor in which a current of 1 ampere is produced by an electric potential difference of 1 volt. Sievert (Sv). The unit of radiation dose equivalent corresponding to 1 joule per kilogram. **Steradian (sr).** The solid angle which, having its vertex in the centre of a sphere, cuts off an area of the surface of the sphere equal to that of a square with sides of length equal to the radius of the sphere. **Tesla (T).** The magnetic flux density given by a magnetic flux of 1 weber per square metre. Tonne (t). The mass equal to 1 000 kilograms. **Volt (V).** The unit of electric potential difference and electromotive force which is the difference of electric potential between two points of a conductor carrying a constant current of 1 ampere, when the power dissipated between these points is equal to 1 watt. Watt (W). The power which gives rise to the production of energy at the rate of 1 joule per second. **Weber (Wb).** The magnetic flux which, linking a circuit of one turn, produces in it an electromotive force of 1 volt as it is reduced to zero at a uniform rate in 1 second. 20 June 2019 Page **3** of **35** Units of Measure To Be Used In Air And Ground Operations ## Chapter 2. Applicability Introductory Note. — This standard contains specifications for the use of a standardized system of units of measurement in Fiji international and domestic civil aviation air and ground operations. This standardized system of units of measurement is based on the International System of Units (SI) and certain non-SI units considered necessary to meet the specialized requirements of international civil aviation. See Appendix A for details concerning the development of the SI. ## 2.1 Applicability The Standards contained in this document shall be applicable to all aspects of Fiji international and domestic civil aviation air and ground operations. 20 June 2019 Page **4** of **35** Units of Measure To Be Used In Air And Ground Operations ## **Chapter 3. Standard Application of Units of Measurement** #### 3.1 SI units 3.1.1 The International System of Units developed and maintained by the General Conference of Weights and Measures (CGPM) shall, subject to the provisions of 3.2 and 3.3, be used as the standard system of units of measurement for all aspects of Fiji international and domestic civil aviation air and ground operations. #### 3.1.2 Prefixes The prefixes and symbols listed in Table 3-1 shall be used to form names and symbols of the decimal multiples and submultiples of SI units. Note 1.— As used herein the term SI unit is meant to include base units and derived units as well as their multiples and sub-multiples. Note 2.— See Appendix B for guidance on the general application of prefixes. Table 3-1. SI unit prefixes | Multiplication factor | Prefix | Symbol | |--|--------|--------| | $1\ 000\ 000\ 000\ 000\ 000\ 000\ = 10^{18}$ | exa | E | | $1\ 000\ 000\ 000\ 000\ 000\ = 10^{15}$ | peta | P | | $1\ 000\ 000\ 000\ 000\ = 10^{12}$ | tera | T | | $1\ 000\ 000\ 000 = 10^9$ | giga | G | | $1\ 000\ 000 = 10^6$ | mega | M | | $1\ 000 = 10^3$ | kilo | k | | $100 = 10^2$ | hecto | h | | $10 = 10^1$ | deca | da | | $0.1 = 10^{-1}$ | deci | d | | $0.01 = 10^{-2}$ | centi | c | | $0.001 = 10^{-3}$ | milli | m | | $0.000\ 001 = 10^{-6}$ | micro | μ | | $0.000\ 000\ 001 = 10^{-9}$ | nano | n | | $0.000\ 000\ 000\ 001 = 10^{-12}$ | pico | p | | $0.000\ 000\ 000\ 000\ 001\ = 10^{-15}$ | femto | f | | $0.000\ 000\ 000\ 000\ 001 = 10^{-18}$ | atto | a | | | | | 20 June 2019 Page **5** of **35** Units of Measure To Be Used In Air And Ground Operations #### 3.2 Non-SI units #### 3.2.1 Non-SI units for permanent use with the SI The non-SI units listed in Table 3-2 shall be used either in lieu of, or in addition to, SI units as primary units of measurement but only as specified in Table 3-4. Table 3-2. Non-SI units for use with the SI | Specific quantities in Fable 3-4 related to | Unit | Symbol | Definition (in terms of SI units) | |---|---|-----------------|--| | nass | tonne | t | $1 t = 10^3 kg$ | | lane angle | degree minute second | • | $1^{\circ} = (\pi/180) \text{ rad}$
$1' = (1/60)^{\circ} = (\pi/10 \ 800) \text{ rad}$
$1'' = (1/60)' = (\pi/648 \ 000) \text{ rad}$ | | emperature | degree Celsius | °C | 1 unit ${}^{\circ}C = 1$ unit $K^{a)}$ | | ne | minute hour
day
week, month, year | min h
d
— | 1 min = 60 s
1 h = 60 min = 3 600 s
1 d = 24 h = 86 400 s | | olume | litre | L | $1 L = 1 dm^3 = 10^{-3}m^3$ | #### 3.2.2 Non-SI alternative units permitted for temporary use with the SI The non-SI units listed in Table 3-3 shall be permitted for temporary use as alternative units of measurement but only for those specific quantities listed in Table 3-4. Note.— It is intended that the use of the non-SI alternative units listed in Table 3-3 and applied as indicated in Table 3-4 will eventually be discontinued in accordance with individual unit termination dates established by the Council. Termination dates, when established, will be given in Chapter 4. #### 3.3 Application of specific units 3.3.1 The application of units of measurement for certain quantities used in Fiji international and domestic civil aviation air and ground operations shall be in accordance with Table 3-4. 20 June 2019 Page **6** of **35** Units of Measure To Be Used In Air And Ground Operations Note.— Table 3-4 is intended to provide standardization of units (including prefixes) for those quantities commonly used in air and ground operations. Basic Annex provisions apply for units to be used for quantities not listed. 3.3.2 Means and provisions for design, procedures and training should be established for operations in environments involving the use of standard and non-SI alternatives of specific units of measurement, or the transition between environments using different units, with due consideration to human performance. Note.— Guidance material on human performance can be found in the Human Factors Training Manual (Doc 9683). Table 3-3. Non-SI alternative units permitted for temporary use with the SI | Specific quantities in Table 3-4 related to | Unit | Symbol | Definition
(in terms of SI units) | |--|---------------|--------|--------------------------------------| | distance (long) | nautical mile | NM | 1 NM = 1 852 m | | distance (vertical) ^{a)} | foot | ft | 1 ft = 0.3048 m | | speed | knot | kt | 1 kt = 0.5144444 m/s | | a) altitude, elevation, height, vertical speed | I | | | Table 3-4. Standard application of specific units of measurement | Ref. No. | Quantity | Primary unit
(symbol) | Non-SI
alternative unit
(symbol) | |-------------|---|--------------------------|--| | Direction/S | Space/Time | | | | 1.1 | altitude | m | ft | | 1.2 | area | m^2 | | | 1.3 | distance (long) ^{a)} | km | NM | | 1.4 | distance (short) | m | | | 1.5 | elevation | m | ft | | 1.6 | endurance | h and min | | | 1.7 | height | m | ft | | 1.8 | latitude | 0 ! !! | | | 1.9 | length | m | | | 1.10 | longitude | 0 1 11 | | | 1.11 | plane angle (when required, decimal subdivisions of the degree shall be used) | 0 | | | 1.12 | runway length | m | | | 1.13 | runway visual range | m | | 20 June 2019 Page **7** of **35** 2. 3. ## **Standard Document** ## Units of Measure To Be Used In Air And Ground Operations 1.14 tank capacities (aircraft)^{b)} L | visibility ^{c)} volume wind direction (wind directions other than for a landing and off shall be expressed in degrees true; for landing and take-off w | s
min h
d
week month
km
m³
° take-
ind directions | year | |---|--|------| | visibility ^{c)} volume wind direction (wind directions other than for a landing and off shall be expressed in degrees true; for landing and take-off w | d
week month
km
m ³
° take- | year | | volume wind directions
other than for a landing and off shall be expressed in degrees true; for landing and take-off w | week month
km
m ³
° take- | year | | volume wind directions other than for a landing and off shall be expressed in degrees true; for landing and take-off w | km
m³
° take- | year | | volume wind directions other than for a landing and off shall be expressed in degrees true; for landing and take-off w | m ³ ° take- | | | wind direction (wind directions other than for a landing and off shall be expressed in degrees true; for landing and take-off w | ° take- | | | off shall be expressed in degrees true; for landing and take-off w | | | | shall be expressed in degrees magnetic) | | | | s-related | | | | air density | kg/m³ | | | area density | kg/m ² | | | cargo capacity | kg | | | cargo density | kg/m^3 | | | density (mass density) | kg/m ³ | | | fuel capacity (gravimetric) | kg | | | gas density | kg/m^3 | | | gross mass or payload | kg | | | | t | | | hoisting provisions | kg | | | linear density | kg/m | | | liquid density | kg/m ³ | | | mass | kg | | | moment of inertia | $kg \cdot m^2$ | | | moment of momentum | $kg \cdot m^2/s$ | | | momentum | kg ⋅ m/s | | | re-related | | | | air pressure (general) | kPa | | | altimeter setting | hPa | | | atmospheric pressure | hPa | | | bending moment | $kN \cdot m$ | | | force | N | | | fuel supply pressure | kPa | | | hydraulic pressure | kPa | | | modulus of elasticity | MPa | | | pressure | kPa | | | stress | MPa | | 20 June 2019 Page **8** of **35** ## Units of Measure To Be Used In Air And Ground Operations | | 3.11 | surface tension | mN/m | | |----|-----------|--------------------------------------|--------------------------|--| | | 3.12 | thrust | kN | | | | 3.13 | torque | $N \cdot m$ | | | | 3.14 | vacuum | Pa | | | | Ref. No. | Quantity | Primary unit
(symbol) | Non-SI
alternative unit
(symbol) | | 4. | Mechanics | | | | | | 4.1 | $airspeed^{d)}$ | km/h | kt | | | 4.2 | angular acceleration | rad/s^2 | | | | 4.3 | angular velocity | rad/s | | | | 4.4 | energy or work | J | | | | 4.5 | equivalent shaft power | kW | | | | 4.6 | frequency | Hz | | | | 4.7 | ground speed | km/h | kt | | | 4.8 | impact | J/m^2 | | | | 4.9 | kinetic energy absorbed by brakes | MJ | | | | 4.10 | linear acceleration | m/s^2 | | | | 4.11 | power | kW | | | | 4.12 | rate of trim | °/s | | | | 4.13 | shaft power | kW | | | | 4.14 | velocity | m/s | | | | 4.15 | vertical speed | m/s | ft/min | | • | 4.16 | wind speed ^{e)} | m/s | kt | | 5. | Flow | | | | | | 5.1 | engine airflow | kg/s | | | | 5.2 | engine waterflow | kg/h | | | ; | 5.3 | fuel consumption (specific) | | | | | | piston engines | $kg/(kW \cdot h)$ | | | | | turbo-shaft engines | $kg/(kW \cdot h)$ | | | | | jet engines | $kg/(kN \cdot h)$ | | | | 5.4 | fuel flow | kg/h | | | | 5.5 | fuel tank filling rate (gravimetric) | kg/min | | | | 5.6 | gas flow | kg/s | | | | 5.7 | liquid flow (gravimetric) | g/s | | | | 5.8 | liquid flow (volumetric) | L/s | | | | 5.9 | mass flow | kg/s | | | ; | 5.10 | oil consumption | 1 4 | | | | | gas turbine | kg/h | | | | 5 1 1 | piston engines (specific) | $g/(kW \cdot h)$ | | | | 5.11 | oil flow | g/s | | | | 5.12 | pump capacity | L/min | | | | 5.13 | ventilation airflow | m³/min | | | | 5.14 | viscosity (dynamic) | $Pa \cdot s$ | | | | 5.15 | viscosity (kinematic) | m^2/s | | | | | | | | 20 June 2019 Page **9** of **35** ## Units of Measure To Be Used In Air And Ground Operations #### 6. Thermodynamics | 6.1 | coefficient of heat transfer | $W/(m^2 \cdot K)$ | |-----|---------------------------------|---------------------------| | 6.2 | heat flow per unit area | J/m^2 | | 6.3 | heat flow rate | W | | 6.4 | humidity (absolute) | g/kg | | 6.5 | coefficient of linear expansion | $^{\circ}\mathrm{C}^{-1}$ | | Ref. No. | | Quantity | Primary unit
(symbol) | Non-SI
alternative unit
(symbol) | |------------|---------------------------------|----------|--------------------------|--| | 6.6
6.7 | quantity of heat
temperature | | °C
1 | | ## 7. Electricity and magnetism | 7.1 | capacitance | F | |------|-------------------------|------------------| | 7.2 | conductance | S | | 7.3 | conductivity | S/m | | 7.4 | current density | A/m^2 | | 7.5 | electric current | A | | 7.6 | electric field strength | C/m ² | | 7.7 | electric potential | V | | 7.8 | electromotive force | V | | 7.9 | magnetic field strength | A/m | | 7.10 | magnetic flux | Wb | | 7.11 | magnetic flux density | T | | 7.12 | power | W | | 7.13 | quantity of electricity | C | | 7.14 | resistance | Ω | ## 8. Light and related electromagnetic radiations | 8.1 | illuminance | lx | |-----|--------------------|-------------------| | 8.2 | luminance | cd/m ² | | 8.3 | luminous exitance | lm/m^2 | | 8.4 | luminous flux | lm | | 8.5 | luminous intensity | cd | | 8.6 | quantity of light | $lm \cdot s$ | | 8.7 | radiant energy | J | | 8.8 | wavelength | m | ## 9. Acoustics | 9.1 | frequency | Hz | |-----|-----------------------|-------------------| | 9.2 | mass density | kg/m ³ | | 9.3 | noise level | $dB^{e)}$ | | 9.4 | period, periodic time | S | | 9.5 | sound intensity | W/m^2 | | 9.6 | sound power | \mathbf{W} | | 9.7 | sound pressure | Pa | 20 June 2019 Page **10** of **35** ## Units of Measure To Be Used In Air And Ground Operations | 9.8 | sound level | $dB^{f)}$ | |------|---------------------------------|-----------| | 9.9 | static pressure (instantaneous) | Pa | | 9.10 | velocity of sound | m/s | | 9.11 | volume velocity (instantaneous) | m^3/s | | 9.12 | wavelength | m | | | | | Non-SI Primary | |----------|----------|----------|------------------| | D.C.V. | | unit | alternative unit | | Ref. No. | Quantity | (symbol) | (symbol) | #### 10. Nuclear physics and ionizing radiation | 10.1 | absorbed dose | Gy | |------|---------------------------|----------------| | 10.2 | absorbed dose rate | Gy/s | | 10.3 | activity of radionuclides | Bq | | 10.4 | dose equivalent | Sv | | 10.5 | radiation exposure | C/kg | | 10.6 | exposure rate | $C/kg \cdot s$ | - a) As used in navigation, generally in excess of 4 000 m. - b) Such as aircraft fuel, hydraulic fluids, water, oil and high pressure oxygen vessels. - c) Visibility of less than 5 km may be given in m. - d) Airspeed is sometimes reported in flight operations in terms of the ratio MACH number. - e) A conversion of 1 kt = 0.5 m/s is used in ICAO Annexes for the representation of wind speed. - f) The decibel (dB) is a ratio which may be used as a unit for expressing sound pressure level and sound power level. When used, the reference level must be specified. 20 June 2019 Page **11** of **35** Units of Measure To Be Used In Air And Ground Operations ## Chapter 4. Termination of Use of Non-Si Alternative Units Introductory Note.— The non-SI units listed in Table 3-3 have been retained temporarily for use as alternative units because of their widespread use and to avoid potential safety problems which could result from the lack of international coordination concerning the termination of their use. As termination dates are established by the Council, they will be reflected in this Standards with amendments in this Chapter. It is expected that the establishment of such dates will be well in advance of actual termination. Any special procedures associated with specific unit termination will be circulated to all Fiji service providers and organizations separately from this Standard. 4.1 The use in Fiji international and domestic civil aviation operations of the alternative non-SI units listed in Table 3-3 shall be terminated on the dates listed in Table 4-1. Table 4-1. Termination dates for non-SI alternative units | 1 | T 1 . | |------------------|-------------------------------| | alternative unit | Termination date | | Knot | not establisheda) | | Nautical mile > | | | | | | | 111111 | | Foot | not established ^{b)} | b) No termination date has yet been established for use of the foot. 20 June 2019 Page **12** of **35** Units of Measure To Be Used In Air And Ground Operations ## **Appendices to Standards-Units of Measure** ## Appendix A. Development of the International System of Units (Si) #### 1. Historical background - 1.1 The name SI is derived from "Système International d'Unités". The system has evolved from units of length and mass (metre and kilogram) which were created by members of the Paris Academy of Sciences and adopted by the French National Assembly in 1795 as a practical measure to benefit industry and commerce. The original system became known as the metric system. Physicists realized the advantages of the system and it was soon adopted in scientific and technical circles. - 1.2 International standardization began with an 1870 meeting of 15 States in Paris that led to the International Metric Convention in 1875 and the establishment of a permanent International Bureau of Weights and Measures. A General Conference on Weights and Measures (CGPM) was also constituted to handle all international matters concerning the metric system. In 1889 the first meeting of the CGPM legalized the old prototype of the metre and the kilogram as the international standard for unit of length and unit of mass, respectively. Other units were agreed in subsequent meetings and by its 10th Meeting in 1954, the CGPM had adopted a rationalized and coherent system of units based on the metre- kilogram-second-ampere (MKSA) system which had been developed earlier, plus the addition of the kelvin as the unit of temperature and the candela as the unit of luminous intensity. The 11th CGPM, held in 1960 and in which 36 States participated, adopted the name International System of Units (SI) and laid down rules for the prefixes, the derived and supplementary units and other matters, thus establishing comprehensive specifications for international units of measurement. The
12th CGPM in 1964 made some refinements in the system, and the 13th CGPM in 1967 redefined the second, renamed the unit of temperature as the kelvin (K) and revised the definition of the candela. The 14th CGPM in 1971 added a seventh base unit, the mole (mol) and approved the pascal (Pa) as a special name for the SI unit of pressure or stress, the newton (N) per square metre (m²) and the siemens (S) as a special name for the unit of electrical conductance. In 1975 the CGPM adopted the becquerel (Bq) as the unit of the activity of radionuclides and the gray (Gy) as the unit for absorbed dose. #### 2. International Bureau of Weights and Measures - 2.1 The Bureau International des Poids et Mesures (BIPM) was set up by the Metre Convention signed in Paris on 20 May 1875 by 17 States during the final session of the Diplomatic Conference of the Metre. This Convention was amended in 1921. BIPM has its headquarters near Paris and its upkeep is financed by the Member States of the Metre Convention. The task of BIPM is to ensure worldwide unification of physical measurements; it is responsible for: - establishing the fundamental standards and scales for measurement of the principal physical quantities and maintaining the international prototypes; - carrying out comparisons of national and international standards; 20 June 2019 Page **13** of **35** # ISO 9001:2015 Certified #### **Standard Document** #### Units of Measure To Be Used In Air And Ground Operations - ensuring the coordination of corresponding measuring techniques; - carrying out and coordinating the determinations relating to the fundamental physical constants. - 2.2 BIPM operates under the exclusive supervision of the International Committee of Weights and Measures (CIPM), which itself comes under the authority of the General Conference of Weights and Measures (CGPM). The International Committee consists of 18 members each belonging to a different State; it meets at least once every two years. The officers of this Committee issue an Annual Report on the administrative and financial position of BIPM to the Governments of the Member States of the Metre Convention. - 2.3 The activities of BIPM, which in the beginning were limited to the measurements of length and mass and to metrological studies in relation to these quantities, have been extended to standards of measurement for electricity (1927), photometry (1937) and ionizing radiations (1960). To this end the original laboratories, built in 1876–78, were enlarged in 1929 and two new buildings were constructed in 1963–64 for the ionizing radiation laboratories. Some 30 physicists or technicians work in the laboratories of BIPM. They do metrological research, and also undertake measurement and certification of material standards of the above-mentioned quantities. - In view of the extension of the work entrusted to BIPM, CIPM has set up since 1927, under the name of Consultative Committees, bodies designed to provide it with information on matters which it refers to them for study and advice. These Consultative Committees, which may form temporary or permanent working groups to study special subjects, are responsible for coordinating the international work carried out in their respective fields and proposing recommendations concerning the amendment to be made to the definitions and values of units. In order to ensure worldwide uniformity in units of measurement, the International Committee accordingly acts directly or submits proposals for sanction by the General Conference. - 2.5 The Consultative Committees have common regulations (*Procès-Verbaux CIPM*, 1963, 31, 97). Each Consultative Committee, the chairman of which is normally a member of CIPM, is composed of a delegate from each of the large metrology laboratories and specialized institutes, a list of which is drawn up by CIPM, as well as individual members also appointed by CIPM and one representative of BIPM. These Committees hold their meetings at irregular intervals; at present there are seven of them in existence as follows: - 1. The Consultative Committee for Electricity (CCE), set up in 1927. - The Consultative Committee for Photometry and Radiometry (CCPR), which is the new name given in 1971 to the Consultative Committee for Photometry set up in 1933 (between 1930 and 1933 the preceding committee (CCE) dealt with matters concerning photometry). - 3. The Consultative Committee for Thermometry (CCT), set up in 1937. - 4. The Consultative Committee for the Definition of the Metre (CCDM), set up in 1952. - 5. The Consultative Committee for the Definition of the Second (CCDS), set up in 1956. 20 June 2019 Page **14** of **35** Units of Measure To Be Used In Air And Ground Operations - The Consultative Committee for the Standards of Measurement of Ionizing Radiation (CCEMRI), set up in 1958. Since 1969 this Consultative Committee has consisted of four sections: Section I (measurement of Xand γ-rays); Section II (measurement of radionuclides); Section III (neutron measurements); Section IV (αenergy standards). - 7. The Consultative Committee for Units (CCU), set up in 1964. The proceedings of the General Conference, the International Committee, the Consultative Committees and the International Bureau are published under the auspices of the latter in the following series: - Comptes rendus des séances de la Conférence Générale des Poids et Mesures; - Procès-Verbaux des séances du Comité International des Poids et Mesures; - Sessions des Comités Consultatifs; - Recueil de Travaux du Bureau International des Poids et Mesures (this compilation brings together articles published in scientific and technical journals and books, as well as certain work published in the form of duplicated reports). - 2.6 From time to time BIPM publishes a report on the development of the metric system throughout the world, entitled Les récents progrès du Système Métrique. The collection of the Travaux et Mémoires du Bureau International des Poids et Mesures (22 volumes published between 1881 and 1966) ceased in 1966 by a decision of the CIPM. Since 1965 the international journal Metrologia, edited under the auspices of CIPM, has published articles on the more important work on scientific metrology carried out throughout the world, on the improvement in measuring methods and standards, of units, etc., as well as reports concerning the activities, decisions and recommendations of the various bodies created under the Metre Convention. #### 3. International Organization for Standardization The International Organization for Standardization (ISO) is a worldwide federation of national standards institutes which, although not a part of the BIPM, provides recommendations for the use of SI and certain other units. ISO Document 1000 and the ISO Recommendation R31 series of documents provide extensive detail on the application of the SI units. ICAO maintains liaison with ISO regarding the standardized application of SI units in aviation. 20 June 2019 Page **15** of **35** Units of Measure To Be Used In Air And Ground Operations ## Appendix B. Guidance on the Application of the SI #### 1. Introduction - 1.1 The International System of Units is a complete, coherent system which includes three classes of units: - a) base units; - b) supplementary units; and - c) derived units. - 1.2 The SI is based on seven units which are dimensionally independent and are listed in Table B-1. - 1.3 The supplementary units of the SI are listed in Table B-2 and may be regarded either as base units or as derived units. Table B-1. SI base units | Quantity | Unit | Symbol | |---------------------------|----------|--------| | amount of a substance | mole | mol | | electric current | ampere | A | | length | metre | m | | luminous intensity | candela | cd | | mass | kilogram | kg | | thermodynamic temperature | kelvin | K | | time | second | S | Table B-2. SI supplementary units | Quantity | Unit | Symbol | |-------------|-----------|--------| | plane angle | radian | rad | | solid angle | steradian | sr | 1.4 Derived units of the SI are formed by combining base units, supplementary units and other derived units according to the algebraic relations linking the corresponding quantities. The symbols for derived units are obtained by means of the mathematical signs for multiplication, division and the use of exponents. Those derived SI units which have special names and symbols are listed in Table B-3. Note.— The specific application of the derived units listed in Table B-3 and other units common to international civil aviation operations is given in Table 3-4. 20 June 2019 Page **16** of **35** Units of Measure To Be Used In Air And Ground Operations Table B-3. SI derived units with special names | Quantity | Unit | Symbol | Derivation | |---|-----------|----------|------------------| | absorbed dose (radiation) | gray | Gy | J/kg | | activity of radionuclides | becquerel | Bq | 1/s | | capacitance | farad | F | C/V | | conductance | siemens | S | A/V | | dose equivalent (radiation) | sievert | Sv | J/kg | | electric potential, potential difference, electromotive force | volt | V | W/A | | electric resistance | ohm | Ω | V/A | | energy, work, quantity of heat | joule | J | $N \cdot m$ | | force | newton | N | $kg \cdot m/s^2$ | | frequency (of a periodic phenomenon) | hertz | Hz | 1/s | | illuminance | lux | lx | lm/m^2 | | inductance | henry | Н | Wb/A | | luminous flux | lumen | lm | cd · sr | | magnetic flux | weber | Wb | $V \cdot s$ | | magnetic flux density | tesla | T | Wb/m^2 | | power, radiant flux | watt | W | J/s | | pressure, stress | pascal | Pa | N/m^2 | | quantity of electricity, electric charge | coulomb | C | $A \cdot s$ | - 1.4 The SI is a rationalized selection of units from the metric system which individually are not new. The great advantage of SI is that there is only one unit for each physical quantity the metre for
length, kilogram (instead of gram) for mass, second for time, etc. From these elemental or base units, units for all other mechanical quantities are derived. These derived units are defined by simple relationships such as velocity equals rate of change of distance, acceleration equals rate of change of velocity, force is the product of mass and acceleration, work or energy is the product of force and distance, power is work done per unit time, etc. Some of these units have only generic names such as metre per second for velocity; others have special names such as newton (N) for force, joule (J) for work or energy, watt (W) for power. The SI units for force, energy and power are the same regardless of whether the process is mechanical, electrical, chemical or nuclear. A force of 1 newton applied for a distance of 1 metre can produce 1 joule of heat, which is identical with what 1 watt of electric power can produce in 1 second - 1.5 The SI is a rationalized selection of units from the metric system which individually are not new. The great advantage of SI is that there is only one unit for each physical quantity the metre for length, kilogram (instead of gram) for mass, second for time, etc. From these elemental or base units, units for all other mechanical quantities are derived. These derived units are defined by simple relationships such as velocity equals rate of change of distance, acceleration equals rate of change of velocity, force is the product of mass and acceleration, work or energy is the product of force and distance, power is work done per unit time, etc. Some of these units have only generic names such as metre per second for velocity; others have special names such as newton (N) for force, joule (J) for work or energy, watt (W) for power. The SI units for force, energy and power are the same regardless of whether the process is 20 June 2019 Page **17** of **35** Units of Measure To Be Used In Air And Ground Operations mechanical, electrical, chemical or nuclear. A force of 1 newton applied for a distance of 1 metre can produce 1 joule of heat, which is identical with what 1 watt of electric power can produce in 1 second. - 1.6 Corresponding to the advantages of SI, which result from the use of a unique unit for each physical quantity, are the advantages which result from the use of a unique and well-defined set of symbols and abbreviations. Such symbols and abbreviations eliminate the confusion that can arise from current practices in different disciplines such as the use of "b" for both the bar (a unit of pressure) and barn (a unit of area). - 1.7 Another advantage of SI is its retention of the decimal relation between multiples and sub-multiples of the base units for each physical quantity. Prefixes are established for designating multiple and sub- multiple units from "exa" (10¹⁸) down to "atto" (10⁻¹⁸) for convenience in writing and speaking. - Another major advantage of SI is its coherence. Units might be chosen arbitrarily, but making an independent choice of a unit for each category of mutually comparable quantities would lead in general to the appearance of several additional numerical factors in the equations between the numerical values. It is possible, however, and in practice more convenient, to choose a system of units in such a way that the equations between numerical values, including the numerical factors, have exactly the same form as the corresponding equations between the quantities. A unit system defined in this way is called coherent with respect to the system of quantities and equations in question. Equations between units of a coherent unit system contain as numerical factors only the number 1. In a coherent system the product or quotient of any two unit quantities is the unit of the resulting quantity. For example, in any coherent system, unit area results when unit length is multiplied by unit length, unit velocity when unit length is divided by unit time, and unit force when unit mass is multiplied by unit acceleration. Note.— Figure B-1 illustrates the relationship of the units of the SI. #### 2. Mass, force and weight - 2.1 The principal departure of SI from the gravimetric system of metric engineering units is the use of explicitly distinct units from mass and force. In SI, the name kilogram is restricted to the unit of mass, and the kilogram-force (from which the suffix force was in practice often erroneously dropped) is not to be used. In its place the SI unit of force, the newton, is used. Likewise, the newton rather than the kilogram-force is used to form derived units which include force, for example, pressure or stress ($N/m^2 = Pa$), energy ($N \cdot m = J$), and power ($N \cdot m/s = W$). - 2.2 Considerable confusion exists in the use of the term weight as a quantity to mean either force or mass. In common use, the term weight nearly always means mass; thus, when one speaks of a person's weight, the quantity referred to is mass. In science and technology, the term weight of a body has usually meant the force that, if applied to the body, would give it an acceleration equal to the local acceleration of free fall. The adjective "local" in the phrase "local acceleration of free fall" has usually meant a location on the surface of the earth; in this context the "local acceleration of free fall" has the symbol g (sometimes referred to as "acceleration of gravity") with observed values of g differing by over 0.5 per cent at various points on the earth's surface and decreasing as distance from the earth is increased. Thus, because weight is a force = mass × acceleration due to gravity, a person's weight is conditional on the person's location, but mass is not. A person with a mass of 70 kg might experience a force (weight) on earth of 686 newtons (≈155 lbf) and a force (weight) of only 113 newtons (≈22 lbf) on the moon. Because of the dual use of the term weight as a quantity, the term weight should be avoided in technical practice except under circumstances in which its meaning is completely clear. When the term is used, it is important to know whether mass or force is intended and to use SI units properly by using kilograms for mass or newtons for force. 20 June 2019 Page **18** of **35** ## ISO 9001:2015 Certified #### **Standard Document** Units of Measure To Be Used In Air And Ground Operations 2.3 Gravity is involved in determining mass with a balance or scale. When a standard mass is used to balance the measured mass, the direct effect of gravity on the two masses is cancelled, but the indirect effect through the buoyancy of air or other fluid is generally not cancelled. In using a spring scale, mass is measured indirectly, since the instrument responds to the force of gravity. Such scales may be calibrated in mass units if the variation in acceleration of gravity and buoyancy corrections are not significant in their use. #### 3. Energy and torque 3.1 The vector product of force and moment arm is widely designated by the unit newton metre. This unit for bending moment or torque results in confusion with the unit for energy, which is also newton metre. If torque is expressed as newton metre per radian, the relationship to energy is clarified, since the product of torque and angular rotation is energy: $(N \cdot m/rad) \cdot rad = N \cdot m$ 3.2 If vectors were shown, the distinction between energy and torque would be obvious, since the orientation of force and length is different in the two cases. It is important to recognize this difference in using torque and energy, and the joule should never be used for torque. #### 4. SI prefixes - 4.1 Selection of prefixes - 4.1.1 In general the SI prefixes should be used to indicate orders of magnitude, thus eliminating non- significant digits and leading zeros in decimal fractions and providing a convenient alternative to the powers-of-ten notation preferred in computation. For example: 12 300 mm becomes 12.3 m 12.3×10^{3} m becomes 12.3 km 0.001 23 µA becomes 1.23 nA - 4.1.2 When expressing a quantity by a numerical value and a unit, prefixes should preferably be chosen so that the numerical value lies between 0.1 and 1 000. To minimize variety, it is recommended that prefixes representing powers of 1 000 be used. However, in the following cases, deviation from the above may be indicated: - a) in expressing area and volume, the prefixes hecto, deca, deci and centi may be required: for example, square hectometre, cubic centimetre; - b) in tables of values of the same quantity, or in a discussion of such values within a given context, it is generally preferable to use the same unit multiple throughout; and - c) for certain quantities in particular applications, one particular multiple is customarily used. For example, the hectopascal is used for altimeter settings and the millimetre is used for linear dimensions in mechanical engineering drawings even when the values lie outside the range 0.1 to 1 000. 20 June 2019 Page **19** of **35** #### Units of Measure To Be Used In Air And Ground Operations #### 4.2 Prefixes in compound units1 It is recommended that only one prefix be used in forming a multiple of a compound unit. Normally the prefix should be attached to a unit in the numerator. One exception to this occurs when the kilogram is one of the units. For example: V/m, not mV/mm; MJ/kg, not kJ/g #### 4.3 Compound prefixes Compound prefixes, formed by the juxtaposition of two or more SI prefixes, are not to be used. For example: 1 nm not 1mμm; 1 pF not 1μμF If values are required outside the range covered by the prefixes, they should be expressed using powers of ten applied to the base unit. 20 June 2019 Page **20** of **35** ^{1.} A compound unit is a derived unit expressed in terms of two or more units, that is, not expressed with a single special name. Units of Measure To Be Used In Air And Ground Operations Figure B-1 20 June 2019 Page **21** of **35** # ISO 9001;2015 Certified #### **Standard
Document** Units of Measure To Be Used In Air And Ground Operations #### 4.4 Powers of units An exponent attached to a symbol containing a prefix indicates that the multiple or sub-multiple of the unit (the unit with its prefix) is raised to the power expressed by the exponent. For example: $$1 \text{ cm}^3 = (10^{-2} \text{ m})^3 = 10^{-6} \text{ m}^3$$ $$1 \text{ ns}^{-1} = (10^{-9} \text{ s})^{-1} = 10^{9} \text{ s}^{-1}$$ $$1 \text{ mm}^2/\text{s} = (10^{-3} \text{ m})^2/\text{s} = 10^{-6} \text{ m}^2/\text{s}$$ ## 5. Style and usage - 5.1 Rules for writing unit symbols - 5.1.1 Unit symbols should be printed in Roman (upright) type regardless of the type style used in the surrounding text. - 5.1.2 Unit symbols are unaltered in the plural. - 5.1.3 Unit symbols are not followed by a period except when used at the end of a sentence. - 5.1.4 Letter unit symbols are written in lower case (cd) unless the unit name has been derived from a proper name, in which case the first letter of the symbol is capitalized (W, Pa). Prefix and unit symbols retain their prescribed form regardless of the surrounding typography. - 5.1.5 In the complete expression for a quantity, a space should be left between the numerical value and the unit symbol. For example, write 35 mm not 35mm, and 2.37 lm, not 2.37lm. When the quantity is used in an adjectival sense, a hyphen is often used, for example, 35-mm film. *Exception:* No space is left between the numerical value and the symbols for degree, minute and second of plane angle, and degree Celsius. - 5.1.6 No space is used between the prefix and unit symbols. - 5.1.7 Symbols, not abbreviations, should be used for units. For example, use "A", not "amp", for ampere. - 5.2 Rules for writing unit names - 5.2.1 Spelled-out unit names are treated as common nouns in English. Thus, the first letter of a unit name is not capitalized except at the beginning of a sentence or in capitalized material such as a title, even though the unit name may be derived from a proper name and therefore be represented as a symbol by a capital letter (see 5.1.4). For example, normally write "newton" not "Newton" even though the symbol is N. 20 June 2019 Page **22** of **35** ## ISO 9001:2015 Certified #### **Standard Document** Units of Measure To Be Used In Air And Ground Operations 5.2.2 Plurals are used when required by the rules of grammar and are normally formed regularly, for example, henries for the plural of henry. The following irregular plurals are recommended: Singular Plural lux lux hertz hertz siemens siemens - 5.2.3 No space or hyphen is used between the prefix and the unit name. - 5.3 Units formed by multiplication and division - 5.3.1 With unit names: Product, use a space (preferred) or hyphen: newton metre or newton-metre. In the case of the watt hour the space may be omitted, thus: watthour. Quotient, use the word per and not a solidus: metre per second not metre/second. Powers, use the modifier squared or cubed placed after the unit name: metre per second squared. In the case of area or volume, a modifier may be placed before the unit name: square millimetre, cubic metre. This exception also applies to derived units using area or volume: watt per square metre. Note.— To avoid ambiguity in complicated expressions, symbols are preferred to words. 5.3.2 With unit symbols: Product may be indicated in either of the following ways: Nm or N \cdot m for newton metre. Note.— When using for a prefix a symbol which coincides with the symbol for the unit, special care should be taken to avoid confusion. The unit newton metre for torque should be written, for example, Nm or $N \cdot m$ to avoid confusion with mN, the millinewton. An exception to this practice is made for computer printouts, automatic typewriter work, etc., where the dot half high is not possible, and a dot on the line may be used. 20 June 2019 Page **23** of **35** Units of Measure To Be Used In Air And Ground Operations Quotient, use one of the following forms: m/s or m s. -1 or _m. In no case should more than one solidus be used in the same expression unless parentheses are inserted to avoid ambiguity. For example, write: $J/(mol \cdot K)$ or $J \cdot mol^{-1} \cdot K^{-1}$ or (J/mol)/K but not J/mol/K. 5.3.3 Symbols and unit names should not be mixed in the same expression. Write: joules per kilogram or J/kg or J · kg⁻¹ but *not* joules/kilogram *or* joules/kg *or* joules · kg⁻¹. - 5.4 Numbers - 5.4.1 The preferred decimal marker is a point on the line (period); however, the comma is also acceptable. When writing numbers less than one, a zero should be written before the decimal marker. - 5.4.2 The comma is not to be used to separate digits. Instead, digits should be separated into groups of three, counting from the decimal point towards the left and the right, and using a small space to separate the groups. For example: 73 655 7 281 81 2.567 321 0.133 47 The space between groups should be approximately the width of the letter "i" and the width of the space should be constant even if variable-width spacing is used between the words. - 5.4.3 The sign for multiplication of numbers is a cross (×) or a dot half high. However, if the dot half high is used as the multiplication sign, a point on the line must not be used as a decimal marker in the same expression. - 5.4.4 Attachment of letters to a unit symbol as a means of giving information about the nature of the quantity under consideration is incorrect. Thus MWe for "megawatts electrical (power)", Vac for "volts ac" and kJt for "kilojoules thermal (energy)" are not acceptable. For this reason, no attempt should be made to construct SI equivalents of the abbreviations "psia" and "psig", so often used to distinguish between absolute and gauge pressure. If the context leaves any doubt as to which is meant, the word pressure must be qualified appropriately. For example: "... at a gauge pressure of 13 kPa". or "... at an absolute pressure of 13 kPa". 20 June 2019 Page **24** of **35** Units of Measure To Be Used In Air And Ground Operations ## **Appendix C.** Conversion Factors #### 1. General - 1.1 The list of conversion factors which is contained in this Attachment is provided to express the definitions of miscellaneous units of measure as numerical multiples of SI units. - 1.2 The conversion factors are presented for ready adaptation to computer readout and electronic data transmission. The factors are written as a number greater than 1 and less than 10 with six or less decimal places. This number is followed by the letter E (for exponent), a plus or minus symbol, and two digits which indicate the power of 10 by which the number must be multiplied to obtain the correct value. For example: ``` 3.523\,907\,E-02 is 3.523\,907\times10^{-2} or 0.035\,239\,07 ``` Similarly, ``` 3.386\ 389\ E + 03\ is\ 3.386\ 389\times 10^3\ or\ 3\ 386.389 ``` - 1.3 An asterisk (*) after the sixth decimal place indicates that the conversion factor is exact and that all subsequent digits are zero. Where less than six decimal places are shown, more precision is not warranted. - 1.4 Further examples of use of the tables: #### 2. Factors not listed 2.1 Conversion factors for compound units which are not listed herein can easily be developed from numbers given in the list by the substitution of converted units, as follows. *Example:* To find conversion factor of $lb \cdot ft/s$ to $kg \cdot m/s$: ``` first convert 1 lb to 0.453 592 4 kg 1 ft to 0.304 8 m then substitute: (0.453 592 4 kg) × (0.304 8 m)/s = 0.138 255 kg m/s ``` Thus the factor is 1.38255E - 01. 20 June 2019 Page **25** of **35** ## Units of Measure To Be Used In Air And Ground Operations ## Table C-1. Conversion factors to SI units (Symbols of SI units given in parentheses) | o convert from | to | Multiply by | |---|--|------------------------| | abampere | ampere (A) | 1.000 000 *E+ | | abcoulomb | coulomb (C) | 1.000 000 *E + 0 | | abfarad | farad (F) | 1.000 000 *E + 0 | | abhenry | henry (H) | 1.000 000 *E - 0 | | abmho | siemens (S) | 1.000 000 *E + | | abohm | $\operatorname{ohm}\left(\Omega\right)$ | 1.000 000 *E - | | abvolt | volt (V) | 1.000 000 *E - | | acre (U.S. survey) | square metre (m ²) | 4.046 873 E + 0 | | ampere hour | coulomb (C) | 3.600 000 *E + | | are | square metre (m ²) | 1.000 000 *E + | | atmosphere (standard) | pascal (Pa) | 1.013 250 *E + | | atmosphere (technical = 1 kgf/cm ²) | pascal (Pa) | 9.806 650 * E + | | bar | pascal (Pa) | 1.000 000 * E + | | barrel (for petroleum, 42 U.S. liquid gal) | cubic metre (m ³) | 1.589 873 *E - | | British thermal unit (International Table) | joule (J) | 1.055 056 E + 0 | | British thermal unit (mean) | joule (J) | 1.055 87 E+0 | | British thermal unit (thermochemical) | joule (J) | 1.054 350 E + 0 | | British thermal unit (39°F) | joule (J) | 1.059 67 E + 0 | | British thermal unit (59°F) | joule (J) | 1.054 80 E + 0 | | British thermal unit (60°F) | joule (J) | 1.054 68 E + 0 | | Btu (International Table) · ft/h · ft ² · °F (k, thermal conductivity) | watt per metre kelvin (W/m \cdot K) | 1.730 735 E + 0 | | Btu (thermochemical) · ft/h · ft ² · °F (k, thermal conductivity) | watt per metre kelvin (W/m \cdot K) | 1.729 577 E + (| | Btu (International Table) · in/h · ft ² · °F (k, thermal conductivity) | watt per metre kelvin ($W/m \cdot K$) | 1.442 279 E – 0 | | Btu (thermochemical) · in/h · ft ² · °F (k, thermal conductivity) | watt per metre kelvin (W/m \cdot K) | 1.441 314 E – 0 | | Btu (International Table) · in/s · ft ² · °F (k, thermal conductivity) | watt per metre kelvin (W/m \cdot K) | 5.192 204 E + 0 | | Btu (thermochemical) · in/s · ft ² · °F (k, thermal conductivity) | watt per metre kelvin (W/m \cdot K) | 5.188 732 E + 0 | | Btu (International Table)/h | watt (W) | 2.930 711 E – 0 | | Btu (thermochemical)/h | watt (W) |
2.928 751 E – 0 | | Btu (thermochemical)/min | watt (W) | 1.757 250 E + 0 | | Btu (thermochemical)/s | watt (W) | 1.054 350 E + 0 | | Btu (International Table)/ft² | joule per square metre (J/m²) | 1.135 653 E + 0 | | Btu (thermochemical)/ft ² | joule per square metre (J/m ²) | 1.134 893 E + 0 | | Btu (thermochemical)/ft ² · h | watt per square metre (W/m ²) | 3.152 481 E + 0 | | Btu (thermochemical)/ft ² · min | watt per square metre (W/m ²) | 1.891 489 E + 0 | | Btu (thermochemical)/ft ² · s | watt per square metre (W/m²) | 1.134 893 E + (| | , | 1 1 | | | Btu (thermochemical)/in $^2 \cdot s$ | watt per square metre (W/m ²) | 1.634 246 E + 0 | 20 June 2019 Page **26** of **35** ^{*} An asterisk (*) after the sixth decimal place indicates that the conversion factor is exact and that all subsequent digits are zero. Where less than six decimal places are shown, more precision is not warranted. ## Units of Measure To Be Used In Air And Ground Operations | To convert from | to | Multiply by | |--|---|---------------------------------------| | Btu (International Table)/h · ft² · °F
(C, thermal conductance) | watt per square metre kelvin ($W/m^2 \cdot K$) | 5.678 263 E + 00 | | Btu (thermochemical)/h · ft² · °F
(C, thermal conductance) | watt per square metre kelvin ($W/m^2 \cdot K$) | 5.674 466 E + 00 | | Btu (International Table)/s · ft² · °F | watt per square metre kelvin ($W/m^2 \cdot K$) | 2.044 175 E + 04 | | Btu (thermochemical)/s · ft² · °F | watt per square metre kelvin (W/m ² · K) | 2.042 808 E + 04 | | Btu (International Table)/lb | joule per kilogram (J/kg) | 2.326 000 *E + 03 | | Btu (thermochemical)/lb | joule per kilogram (J/kg) | 2.324 444 E + 03 | | Btu (International Table)/lb · °F | joule per kilogram kelvin (J/kg $\square \cdot K$) | 4.186 800 *E + 03 | | (c, heat capacity) | J F (| | | Btu (thermochemical)/lb·°F (c, heat capacity) | joule per kilogram kelvin (J/kg $\ \Box \cdot K$) | 4.184 000 E + 03 | | calibre (inch) | metre (m) | 2.540 000 *E - 02 | | calorie (International Table) | joule (J) | 4.186 800 *E + 00 | | calorie (mean) | joule (J) | $4.190\ 02\ E+00$ | | calorie (thermochemical) | joule (J) | 4.184 000 *E + 00 | | calorie (15°C) | joule (J) | $4.185\ 80\ E+00$ | | calorie (20°C) | joule (J) | 4.181 90 E + 00 | | calorie (kilogram, International Table) | joule (J) | 4.186 800 *E + 03 | | calorie (kilogram, mean) | joule (J) | 4.190 02 E + 03 | | calorie (kilogram, thermochemical) | joule (J) | 4.184 000 *E + 03 | | cal (thermochemical)/cm ² | joule per square metre (J/m ²) | 4.184 000 *E + 04 | | cal (International Table)/g | joule per kilogram (J/kg) | 4.186 800 *E + 03 | | cal (thermochemical)/g | joule per kilogram (J/kg) | 4.184 000 *E + 03 | | cal (International Table)/g · °C | joule per kilogram kelvin (J/kg · K) | 4.186 800 *E + 03 | | cal (thermochemical)/g · °C
cal (thermochemical)/min | joule per kilogram kelvin (J/kg · K)
watt (W) | 4.184 000 *E + 03
6.973 333 E - 02 | | cal (thermochemical)/s | watt (W) | 4.184 000 *E + 00 | | cal (thermochemical)/cm2 · min | watt per square metre (W/m2) | 6.973 333 E + 02 | | cal (thermochemical)/cm2 · s | watt per square metre (W/m2) | 4.184 000 *E + 04 | | cal (thermochemical)/cm · s · °C | watt per metre kelvin (W/m · K) | 4.184 000 *E + 02 | | centimetre of mercury (0°C) | pascal (Pa) | 1.333 22 E + 03 | | centimetre of water (4°C) | pascal (Pa) | 9.806 38 E + 01 | | centipoise | pascal second (Pa · s) | 1.000 000 *E - 03 | | centistokes | metre squared per second (m2/s) | 1.000 000 *E - 06 | | circular mil | square metre (m2) | $5.067\ 075\ \mathrm{E} - 10$ | | clo | kelvin metre squared per watt $(K \cdot m2/W)$ | 2.003712 E - 01 | | cup | cubic metre (m3) | 2.365882 E - 04 | | curie | becquerel (Bq) | 3.700 000 *E + 10 | | day (mean solar) | second (s) | 8.640 000 E + 04 | | day (sidereal) | second (s) | 8.616 409 E + 04 | | degree (angle) | radian (rad) | $1.745\ 329\ \mathrm{E} - 02$ | | °F · h · ft2/Btu (International Table) (R, thermal | kelvin metre squared per watt $(K \cdot m2/W)$ | $1.761\ 102\ \mathrm{E} - 01$ | | resistance) °F · h · ft2/Btu (thermochemical) (R, thermal resistance) | kelvin metre squared per watt (K \cdot m2/W) | 1.762 280 E – 01 | | dyne | newton (N) | 1.000 000 *E - 05 | | dyne · cm | newton metre $(N \cdot m)$ | 1.000 000 *E - 07 | | dyne/cm2 | pascal (Pa) | 1.000 000 *E - 01 | | To convert from | to | Multiply by | | 10 convert from | to | νιμιιριγ θη | 20 June 2019 Page **27** of **35** ## Units of Measure To Be Used In Air And Ground Operations | | | 4 600 60 = 10 | |---|--|-------------------------------| | electronvolt | joule (J) | 1.602 19 E – 19 | | EMU of capacitance | farad (F) | 1.000 000 *E + 09 | | EMU of current | ampere (A) | 1.000 000 *E + 01 | | EMU of electric potential | volt (V) | $1.000\ 000\ *E - 08$ | | EMU of inductance | henry (H) | 1.000 000 *E – 09 | | EMU of resistance | $\operatorname{ohm}\left(\Omega\right)$ | 1.000 000 *E – 09 | | erg | joule (J) | $1.000\ 000\ *E - 07$ | | $erg/cm^2 \cdot s$ | watt per square metre (W/m ²) | $1.000\ 000\ *E - 03$ | | erg/s | watt (W) | $1.000\ 000\ *E - 07$ | | ESU of capacitance | farad (F) | 1.112650 E - 12 | | ESU of current | ampere (A) | 3.3356 E-10 | | ESU of electric potential | volt (V) | 2.9979 E + 02 | | ESU of inductance | henry (H) | 8.987 554 E + 11 | | ESU of resistance | ohm (Ω) | 8.987 554 E + 11 | | faraday (based on carbon-12) | coulomb (C) | 9.648 70 E + 04 | | faraday (chemical) | coulomb (C) | 9.649 57 E + 04 | | faraday (physical) | coulomb (C) | 9.652 19 E + 04 | | fathom | metre (m) | 1.828 8 E + 00 | | fermi (femtometre) | metre (m) | 1.000 000 *E – 15 | | fluid ounce (U.S.) | cubic metre (m ³) | 2.957 353 E – 05 | | foot | metre (m) | 3.048 000 *E – 01 | | foot (U.S. survey) | metre (m) | 3.048 006 E – 01 | | foot of water (39.2°F) | pascal (Pa) | 2.988 98 E + 03 | | ft ² | square metre (m ²) | 9.290 304 *E – 02 | | ft ² /h (thermal diffusivity) | metre squared per second (m ² /s) | 2.580 640 *E – 05 | | ft ² /s | metre squared per second (m ² /s) | $9.290\ 304\ *E - 02$ | | ft ³ (volume; section modulus) | cubic metre (m ³) | 2.831 685 E − 02 | | ft ³ /min | cubic metre per second (m ³ /s) | 4.719474 E - 04 | | ft ³ /s | cubic metre per second (m ³ /s) | $2.831\ 685\ \mathrm{E}-02$ | | ft ⁴ (moment of section) | metre to the fourth power (m ⁴) | $8.630\ 975\ \mathrm{E}-03$ | | ft · lbf | joule (J) | 1.355818 E + 00 | | ft · lbf/h | watt (W) | 3.766 161 E – 04 | | | | 2.259 697 E – 02 | | ft · lbf/min | watt (W) | | | ft · lbf/s | watt (W) | 1.355818E+00 | | ft · poundal | joule (J) | $4.214\ 011\ \mathrm{E} - 02$ | | free fall, standard (g) | metre per second squared (m/s ²) | 9.806 650 *E + 00 | | ft/h | metre per second (m/s) | $8.466\ 667\ \mathrm{E} - 05$ | | ft/min | metre per second (m/s) | $5.080\ 000\ *E - 03$ | | ft/s | metre per second (m/s) | $3.048\ 000\ *E - 01$ | | ft/s ² | metre per second squared (m/s ²) | $3.048\ 000\ *E - 01$ | | footcandle | lux (lx) | $1.076\ 391\ E + 01$ | | footlambert | candela per square metre (cd/m²) | $3.426\ 259\ E + 00$ | | gal | metre per second squared (m/s ²) | $1.000\ 000\ *E - 02$ | | gallon (Canadian liquid) | cubic metre (m ³) | $4.546\ 090\ \mathrm{E} - 03$ | | gallon (U.K. liquid) | cubic metre (m ³) | $4.546\ 092\ \mathrm{E} - 03$ | | gallon (U.S. dry) | cubic metre (m ³) | 4.404884 E - 03 | | gallon (U.S. liquid) | cubic metre (m ³) | 3.785412 E - 03 | | gal (U.S. liquid)/day | cubic metre per second (m ³ /s) | $4.381\ 264\ \mathrm{E} - 08$ | | gal (U.S. liquid)/min | cubic metre per second (m ³ /s) | $6.309\ 020\ E - 05$ | | gal (U.S. liquid)/hp · h | cubic metre per joule (m³/J) | $1.410~089~\mathrm{E}-09$ | | (SFC, specific fuel consumption) | | | | gamma | tesla (T) | 1.000 000 *E - 09 | | To convert from | to | Multiply by | | | | | 20 June 2019 Page **28** of **35** ## Units of Measure To Be Used In Air And Ground Operations | 2015 Certified | | | |--|---|---| | gauss gilbert grad grad gram g/cm3 gram-force/cm2 | tesla (T) ampere (A) degree (angular) radian (rad) kilogram (kg) kilogram per cubic metre (kg/m3) pascal (Pa) | 1.000 000 *E - 04
7.957 747 E - 01
9.000 000 *E - 01
1.570 796 E - 02
1.000 000 *E - 03
1.000 000 *E + 03
9.806 650 *E + 01 | | hectare horsepower (550 ft · lbf/s) horsepower (electric) horsepower (metric) horsepower (water) horsepower (U.K.) hour (mean solar) hour (sidereal) hundredweight (long) hundredweight (short) | square metre (m2) watt (W) watt (W) watt (W) watt (W) watt (W) second (s) second (s) kilogram (kg) kilogram (kg) | 1.000 000 *E + 04
7.456 999 E + 02
7.460 000 *E + 02
7.354 99 E + 02
7.460 43 E + 02
7.457 0 E + 02
3.600 000 E + 03
3.590 170 E + 03
5.080 235 E + 01
4.535 924 E + 01 | | inch inch of mercury (32°F) inch of mercury (60°F) inch of water (39.2°F) inch of water (60°F) in2 in3 (volume;
section modulus) in3/min in4 (moment of section) in/s in/s2 | metre (m) pascal (Pa) pascal (Pa) pascal (Pa) pascal (Pa) pascal (Pa) square metre (m2) cubic metre (m3) cubic metre per second (m3/s) metre to the fourth power (m4) metre per second squared (m/s2) | 2.540 000 *E - 02
3.386 38 E + 03
3.376 85 E + 03
2.490 82 E + 02
2.488 4 E + 02
6.451 600 *E - 04
1.638 706 E - 05
2.731 177 E - 07
4.162 314 E - 07
2.540 000 *E - 02
2.540 000 *E - 02 | | kilocalorie (International Table) kilocalorie (mean) kilocalorie (thermochemical) kilocalorie (thermochemical)/min kilocalorie (thermochemical)/s kilogram-force (kgf) kgf · m kgf · s²/m (mass) kgf/cm² kgf/m² kgf/m² kgf/mm² km/h kilopond kW · h kip (1 000 lbf) kip/in² (ksi) knot (international) | joule (J) joule (J) joule (J) watt (W) watt (W) newton (N) newton metre (N · m) kilogram (kg) pascal (Pa) pascal (Pa) pascal (Pa) metre per second (m/s) newton (N) joule (J) newton (N) pascal (Pa) metre per second (m/s) | 4.186 800 *E + 03
4.190 02 E + 03
4.184 000 *E + 03
6.973 333 E + 01
4.184 000 *E + 03
9.806 650 *E + 00
9.806 650 *E + 00
9.806 650 *E + 04
9.806 650 *E + 04
9.806 650 *E + 06
2.777 778 E - 01
9.806 650 *E + 00
3.600 000 *E + 06
4.448 222 E + 03
6.894 757 E + 06
5.144 444 E - 01 | | lambert lamgley | candela per square metre (cd/m²)
candela per square metre (cd/m²)
joule per square metre (J/m²) | $1/\pi$ *E + 04
3.183 099 E + 03
4.184 000 *E + 04 | | To convert from | to | Multiply by | | lb · ft² (moment of inertia) | kilogram metre squared (kg \cdot m ²) | 4.214 011 E – 02 | 20 June 2019 Page **29** of **35** ## Units of Measure To Be Used In Air And Ground Operations | lb · in² (moment of inertia) | kilogram metre squared (kg · m²) | 2.926 397 E – 04 | |--|---|--------------------------------------| | lb/ft·h | pascal second (Pa · s) | 4.133789 E - 04 | | lb/ft ⋅ s | pascal second (Pa · s) | 1.488 164 E + 00 | | lb/ft² | kilogram per square metre (kg/m²) | 4.882 428 E + 00 | | lb/ft3 | kilogram per cubic metre (kg/m ³) | 1.601 846 E + 01 | | lb/gal (U.K. liquid) | kilogram per cubic metre (kg/m3) | 9.977 633 E + 01 | | lb/gal (U.S. liquid) | kilogram per cubic metre (kg/m3) | 1.198 264 E + 02 | | lb/h | kilogram per second (kg/s) | 1.259 979 E – 04 | | lb/hp · h | kilogram per joule (kg/J) | 1.689 659 E – 07 | | (SFC, specific fuel consumption) | 8 1 3 (8) | | | lb/in3 | kilogram per cubic metre (kg/m3) | 2.767 990 E + 04 | | lb/min | kilogram per second (kg/s) | 7.559873 E - 03 | | lb/s | kilogram per second (kg/s) | 4.535924 E - 01 | | lb/yd3 | kilogram per cubic metre (kg/m3) | 5.932764 E - 01 | | lbf ⋅ ft | newton metre $(N \cdot m)$ | 1.355 818 E + 00 | | lbf ⋅ ft/in | newton metre per metre $(N \cdot m/m)$ | 5.337 866 E + 01 | | lbf · in | newton metre $(N \cdot m)$ | 1.129848 E - 01 | | lbf · in/in | newton metre per metre $(N \cdot m/m)$ | 4.448 222 E + 00 | | lbf⋅s/ft2 | pascal second (Pa · s) | 4.788 026 E + 01 | | lbf/ft | newton per metre (N/m) | 1.459 390 E + 01 | | lbf/ft2 | pascal (Pa) | 4.788 026 E + 01 | | lbf/in | newton per metre (N/m) | 1.751 268 E + 02 | | lbf/in2 (psi) | pascal (Pa) | 6.894 757 E + 03 | | lbf/lb (thrust/weight (mass) ratio) | newton per kilogram (N/kg) | 9.806 650 E + 00 | | light year | metre (m) | 9.460 55 E + 15 | | litre | cubic metre (m3) | $1.000\ 000\ *E - 03$ | | maxwell | weber (Wb) | 1.000 000 *E – 08 | | mho | siemens (S) | 1.000 000 *E + 00 | | microinch | metre (m) | $2.540\ 000\ *E - 08$ | | micron | metre (m) | 1.000 000 *E - 06 | | mil | metre (m) | $2.540\ 000\ *E - 05$ | | mile (international) | metre (m) | 1.609 344 *E + 03 | | mile (statute) | metre (m) | $1.609\ 3$ E + 03 | | mile (U.S. survey) | metre (m) | $1.609\ 347\ \mathrm{E} + 03$ | | mile (international nautical) | metre (m) | 1.852 000 *E + 03 | | mile (U.K. nautical) | metre (m) | 1.853 184 *E + 03 | | mile (U.S. nautical) | metre (m) | $1.852\ 000\ *E + 03$ | | mi ² (international) | square metre (m ²) | $2.589\ 988\ E + 06$ | | mi ² (U.S. survey) | square metre (m ²) | 2.589998 E + 06 | | mi/h (international) | metre per second (m/s) | 4.470400 *E -01 | | mi/h (international) | kilometre per hour (km/h) | 1.609344 *E + 00 | | mi/min (international) | metre per second (m/s) | 2.682 240 *E + 01 | | mi/s (international) | metre per second (m/s) | 1.609 344 *E + 03 | | millibar | pascal (Pa) | 1.000 000 *E + 02 | | millimetre of mercury (0°C) | pascal (Pa) | 1.333 22 E + 02 | | minute (angle)
minute (mean solar) | radian (rad) | 2.908 882 E – 04
6.000 000 E + 01 | | minute (mean solar)
minute (sidereal) | second (s)
second (s) | 5.983 617 E + 01 | | minute (sidereal)
month (mean calendar) | second(s) | 2.628 000 E + 06 | | month (mean eartheat) | second(s) | 2.020 000 L + 00 | | To convert from | to | Multiply by | | oersted | ampere per metre (A/m) | 7.957 747 E + 01 | | ohm centimetre | ohm metre ($\Omega \cdot m$) | $1.000\ 000\ *E - 02$ | | omn centilieuc | omn mene (77 . m) | 1.000 000 E - 02 | 20 June 2019 Page **30** of **35** ## Units of Measure To Be Used In Air And Ground Operations | ohm ricular-mil per ft | .2013 Certified | | | |---|-------------------------------|--------------------------------------|-------------------------------| | ounce (troy or apothecary) kilogram (kg) 2.834 952 F - 02 ounce (tV. K. fluid) cubic metre (m3) 2.841 307 F - 05 ounce (U.K. fluid) cubic metre (m3) 2.957 353 E - 05 ounce (or U.S. fluid) cubic metre (m3) 2.957 353 E - 05 ounce force newton (N) 7.061 552 E - 03 or (avoirdupois)/gal (U.K. liquid) kilogram per cubic metre (kg/m3) 7.489 152 E + 00 or (avoirdupois)/gal (U.S. liquid) kilogram per cubic metre (kg/m3) 7.489 152 E + 00 or (avoirdupois)/gal (U.S. liquid) kilogram per cubic metre (kg/m3) 7.489 152 E + 00 or (avoirdupois)/gal (U.S. liquid) kilogram per cubic metre (kg/m3) 7.489 152 E + 00 or (avoirdupois)/gal (U.S. liquid) kilogram per cubic metre (kg/m2) 3.051 517 E - 01 or (avoirdupois)/gal (U.S. liquid) kilogram per pascal second metre (kg/m2) 3.085 678 E + 16 parsec metre (m) 3.305 578 E - 02 perm (O°C) kilogram (eg) 1.555 174 E - 03 perm (O°C) kilogram per pascal second metre (kg/m2) 5.721 35 E - 11 kilogram per pascal second metre (kg/m2) 5.745 25 E - 11 kilogram | ohm circular-mil per ft | ohm millimetre squared per metre | | | ounce (U.K. fluid) kilogram (kg) 3.110 348 E − 0 ounce (U.K. fluid) cubic metre (m3) 2.841 307 E − 05 ounce (U.S. fluid) cubic metre (m3) 2.957 353 E − 05 ounce (O.K. fluid) cubic metre (m3) 2.957 353 E − 05 out (avoirdupois)/gal (U.K. liquid) kilogram per cubic metre (kg/m3) 7.06 1552 E − 03 oz (avoirdupois)/gal (U.S. liquid) kilogram per cubic metre (kg/m3) 7.489 152 E + 00 oz (avoirdupois)/gal (U.S. liquid) kilogram per cubic metre (kg/m3) 1.729 994 E + 00 oz (avoirdupois)/yd2 kilogram per square metre (kg/m2) 3.081 517 E − 01 oz (avoirdupois)/yd2 kilogram (kg) 1.555 174 E − 03 perm (o°C) kilogram (kg) 1.555 174 E − 03 perm (o°C) kilogram (kg) 1.555 174 E − 03 perm (o°C) kilogram per pascal second metre squared (kg/Pa·s·m2) 5.721 35 E − 11 perm in (0°C) kilogram per pascal second metre
(kg/Pa·s·m) 1.453 22 E − 12 perm · in (0°C) kilogram per pascal second metre (kg/Pa·s·m) 1.459 29 E − 1 perm · in (3°C) kilogram per pascal second metre (kg/Pa·s·m) 1.459 29 E − 1 | | | | | ounce (U.S. fluid) cubic metre (m3) 2.841 307 E − 05 ounce-force newton (N) 2.957 353 E − 05 ounce force newton (N) 2.780 139 E − 01 oz (avoirdupois)/gal (U.S. liquid) kilogram per cubic metre (kg/m3) 6.236 C21 E + 00 oz (avoirdupois)/gal (U.S. liquid) kilogram per cubic metre (kg/m3) 7.489 152 E + 00 oz (avoirdupois)/fi2 kilogram per cubic metre (kg/m3) 1.729 994 E + 03 oz (avoirdupois)/fi2 kilogram per square metre (kg/m2) 3.051 517 E − 01 parsec metre (m) 3.085 678 E + 16 pennyweight kilogram per pascal second metre square metre (kg/m2) 3.551 174 E − 03 perm (0°C) kilogram per pascal second metre squared (kg/m² - s · m²) 5.721 35 E − 11 perm (0°C) kilogram per pascal second metre (kg/m² - s · m²) 1.453 22 E − 12 perm · in (0°C) kilogram per pascal second metre (kg/m² - s · m²) 1.453 22 E − 12 perm · in (23°C) kilogram per pascal second metre (kg/m² - s · m²) 1.459 29 E − 12 phot (kg/m² - s · m²) 1.459 29 E − 12 pound (la voir quare (kg/m² - s · m²) 1.459 29 E − 12 pound (| | | | | oumce (U.S. fluid) cubic metre (m3) 2.957 353 E = 01 ounce-force newton (N) 2.780 139 E = 01 oz (avoirdupois)/gal (U.S. liquid) kilogram per cubic metre (kg/m3) 7.480 152 E = 03 oz (avoirdupois)/gal (U.S. liquid) kilogram per cubic metre (kg/m3) 7.480 152 E ± 00 oz (avoirdupois)/gal (U.S. liquid) kilogram per cubic metre (kg/m3) 1.729 994 E ± 00 oz (avoirdupois)/yd2 kilogram per square metre (kg/m2) 3.051 517 E = 01 oz (avoirdupois)/yd2 kilogram per square metre (kg/m2) 3.055 678 E ± 16 perme (PC) kilogram (kg) 1.555 174 E = 03 perm (PC) kilogram per pascal second metre squared (kg/Pa · s · m2) 5.742 25 E = 11 perm (PC) kilogram per pascal second metre squared (kg/Pa · s · m2) 5.745 25 E = 11 perm · in (0°C) kilogram per pascal second metre (kg/Pa · s · m2) 1.453 22 E = 12 perm · in (23°C) kilogram per pascal second metre (kg/Pa · s · m2) 1.453 22 E = 12 perm · in (23°C) kilogram per pascal second metre (kg/Pa · s · m2) 1.459 29 E = 12 phot lumen per square metre (lm/m2) 1.000 000 °E = 01 point (U.S. liquid) c | | | | | ounce-force newton (N) 2.780 139 E − 01 oz (avoirdupois)/gal (U.K. liquid) newton metre (N·m) 7.061 552 E − 03 oz (avoirdupois)/gal (U.S. liquid) kilogram per cubic metre (kg/m3) 7.489 152 E + 00 oz (avoirdupois)/m3 kilogram per cubic metre (kg/m3) 1.729 994 E + 03 oz (avoirdupois)/m2 kilogram per cubic metre (kg/m3) 1.729 994 E + 03 oz (avoirdupois)/m2 kilogram per square metre (kg/m2) 3.051 517 E − 01 oz (avoirdupois)/yd2 kilogram per square metre (kg/m2) 3.051 517 E − 01 parsec metre (m) 3.085 678 E + 16 perm (0°C) kilogram per square metre (kg/m2) 5.721 35 E − 11 perm (23°C) kilogram per pascal second metre squared (kg/Pa·s·m2) 5.745 25 E − 11 perm · in (0°C) kilogram per pascal second metre (kg/Pa·s·m2) 5.745 25 E − 11 perm · in (23°C) kilogram per pascal second metre (kg/Pa·s·m2) 1.453 22 E − 12 perm · in (23°C) kilogram per pascal second metre (kg/Pa·s·m2) 1.459 29 E − 12 phot lumen per square metre (lm/m2) 1.600 000 °E + 04 pint (U.S. dry) cubic metre (m3) 5.506 105 E − 04 pint (U.S. liquid) cubic metre (m3) 4.731 765 E − 04 pound (the voirdupois) kilogram (kg) 4.535 924 E − 01 pound (the voirdupois) kilogram (kg) 3.332 47 E − 01 pound (the voirdupois) kilogram (kg) 3.332 47 E − 01 poundal poundal newton (N) 3.82 550 E − 01 poundal newton (N) 3.82 550 E − 01 poundal newton (N) 3.82 550 E − 01 poundal newton (N) 4.448 222 E + 00 quart (U.S. liquid) cubic metre (m3) 4.488 164 E + 00 poundal newton (N) 4.488 222 E + 00 pund (troy or apothecary) cubic metre (m3) 4.488 164 E + 00 poundal newton (N) 3.83 550 E − 01 pound (troy or apothecary) cubic metre (m3) 4.488 164 E + 00 poundal newton (N) 3.83 550 E − 01 poundal newton | | | | | ozf · in newton metre (N· m) 7.06 i 552 E - 03 oz (avoirdupois)/gal (U.S. liquid) kilogram per cubic metre (kg/m3) 6.236 021 E + 00 oz (avoirdupois)/gal (U.S. liquid) kilogram per cubic metre (kg/m3) 7.489 152 E + 00 oz (avoirdupois)/gal kilogram per cubic metre (kg/m3) 1.729 994 E + 00 oz (avoirdupois)/yd2 kilogram per square metre (kg/m2) 3.051 517 E - 01 oz (avoirdupois)/yd2 kilogram per square metre (kg/m2) 3.095 575 E - 02 parsec metre (m) 3.085 678 E + 10 perm (θ°C) kilogram (kg) 1.555 174 E - 03 perm (θ°C) kilogram (kg/Pa·s·m2) 5.745 25 E - 11 perm · in (0°C) kilogram per pascal second metre squared (kg/Pa·s·m2) 5.745 25 E - 11 perm · in (23°C) kilogram per pascal second metre (kg/Pa·s·m2) 1.453 22 E - 12 perm · in (23°C) kilogram per pascal second metre (kg/Pa·s·m2) 1.453 22 E - 12 perm · in (23°C) kilogram per pascal second metre (kg/Pa·s·m2) 1.453 22 E - 12 perm · in (23°C) kilogram per pascal second metre (kg/Pa·s·m2) 1.453 22 E - 12 perm · in (23°C) kilogram per ubic metre (lm/m2) | | | | | oz (avoirdupois)/gal (U.K. liquid) kilogram per cubic metre (kg/m3) 6.236 021 E ± 00 oz (avoirdupois)/gal (U.S. liquid) kilogram per cubic metre (kg/m3) 7.489 152 E ± 00 oz (avoirdupois)/fi2 kilogram per cubic metre (kg/m2) 3.051 517 E ± 01 oz (avoirdupois)/fi2 kilogram per square metre (kg/m2) 3.051 517 E ± 01 oz (avoirdupois)/yd2 kilogram per square metre (kg/m2) 3.085 678 E ± 16 perm (2°C) kilogram per square metre (kg/m2) 3.085 678 E ± 16 perm (9°C) kilogram per pascal second metre squared (kg/Pa · s · m2) 5.721 35 E ± 11 perm (23°C) kilogram per pascal second metre (kg/Pa · s · m2) 5.745 25 E ± 11 perm · in (0°C) kilogram per pascal second metre (kg/Pa · s · m) 1.453 22 E ± 12 perm · in (23°C) kilogram per pascal second metre (kg/Pa · s · m) 1.453 22 E ± 12 perm · in (23°C) kilogram per pascal second metre (kg/Pa · s · m) 1.453 22 E ± 12 perm · in (23°C) kilogram per pascal second metre (kg/Pa · s · m) 1.453 22 E ± 12 perm · in (23°C) kilogram per pascal second metre (kg/Pa · s · m) 1.453 22 E ± 12 ppint (U.S. dry) cubic metre (m3) 5.06 105 E ± 04 | | | | | oz (avoirdupois)/gal (U.S. liquid) kilogram per cubic metre (kg/m3) 7.489 152 E + 00 oz (avoirdupois)/iñ3 kilogram per square metre (kg/m2) 3.051 517 E - 01 oz (avoirdupois)/yd2 kilogram per square metre (kg/m2) 3.390 575 E - 02 parsee metre (m) 3.085 678 E + 16 perm (0°C) kilogram (kg) 1.555 174 E - 03 perm (0°C) kilogram per pascal second metre squared (kg/Pa · s · m2) 5.721 35 E - 11 perm · in (0°C) kilogram per pascal second metre (kg/Pa · s · m2) 5.745 25 E - 11 perm · in (23°C) kilogram per pascal second metre (kg/Pa · s · m2) 1.453 22 E - 12 perm · in (23°C) kilogram per pascal second metre (kg/Pa · s · m2) 1.459 29 E - 12 phot lumen per square metre (lm/m2) 1.000 000 *E + 04 pint (U.S. dry) cubic metre (m3) 4.731 765 E - 04 pint (U.S. dry) cubic metre (m3) 4.731 765 E - 04 pint (U.S. dry) cubic metre (m3) 4.731 765 E - 04 pint (U.S. dry) cubic metre (m3) 4.731 765 E - 04 pint (troy or apothecary) kilogram (kg) 3.732 41 | | | | | oz (avoirdupois)/n3 kilogram per cubic metre (kg/m3) 1.729 994 E+ 03 oz (avoirdupois)/d2 kilogram per square metre (kg/m2) 3.051 517 E − 01 oz (avoirdupois)/d2 kilogram per square metre (kg/m2) 3.085 678 E+ 16 parsec metre (m) 3.085 678 E+ 16 perm (0°C) kilogram per pascal second metre squared (kg/Pa·s·m2) 5.721 35 E− 11 perm (23°C) kilogram per pascal second metre (kg/Pa·s·m2) 5.745 25 E− 11 perm · in (0°C) kilogram per pascal second metre (kg/Pa·s·m) 1.453 22 E− 12 perm · in (23°C) kilogram per pascal second metre (kg/Pa·s·m) 1.459 29 E− 12 phot lumen per square metre (lm/m2) 1.000 000 °E+ 04 pint (U.S. dry) cubic metre (m3) 5.506 105 E− 04 pint (U.S. liquid) cubic metre (m3) 4.731 765 E− 04 pound (lb avoirdupois) kilogram (kg) 3.332 417 E− 01 pound (lb avoirdupois) kilogram (kg) 3.732 417 E− 01 poundal nector (lbf) newton (N) 1.382 550 E− 01 poundal nector (lbf) pascal second (Pa·s) 1.488 164 E+ 00 poundal rofre (lbf) newton (N) | | C 1 (C) | | | oz (avoirdupois)/ft2 kilogram per square metre (kg/m2) 3.051 517 E - 01 oz (avoirdupois)/yd2 kilogram per square metre (kg/m2) 3.395 575 E - 02 parsec metre (m) 3.085 678 E + 16 perm (0°C) kilogram (kg) 1.555 174 E - 03 perm (0°C) kilogram per pascal second metre squared (kg/Pa · s · m2) 5.721 35 E - 11 perm (10°C) kilogram per pascal second metre (kg/Pa · s · m) 1.453 22 E - 12 perm · in (0°C) kilogram per pascal second metre (kg/Pa · s · m) 1.453 22 E - 12 perm · in (23°C) kilogram per pascal second metre (kg/Pa · s · m) 1.459 29 E - 12 phot lumen per square metre (lm/m2) 1.000 000 *E + 04 pint (U.S. dry) cubic metre (m3) 5.506 105 E - 04 pint (U.S. liquid) cubic metre (m3) 4.731 765 E - 04 poise (absolute viscosity) pascal second (Pa · s) 1.000 000 *E - 04 poise (absolute viscosity) pascal second (Pa · s) 1.000 000 *E - 04 poundal (troy or apothecary) kilogram (kg) 3.732 417 E - 01 poundal/fi2 pascal second (Pa · s) 1.488 164 E + 00 poundal (roy or apothe | | | | | 02 (avoirdupois)/yd2 kilogram per square metre (kg/m2) 3.390 575 E - 02 parsec metre (m) 3.085 678 E + 16 pennyweight kilogram (kg) 1.555 174 E - 03 perm (0°C) kilogram per pascal second metre squared (kg/Pa · s · m2) 5.721 35 E - 11 perm (23°C) kilogram per pascal second metre squared (kg/Pa · s · m2) 5.745 25 E - 11 perm · in (0°C) kilogram per pascal second metre (kg/Pa · s · m) 1.453 22 E - 12 perm · in (23°C) kilogram per pascal second metre (kg/Pa · s · m) 1.453 22 E - 12 perm · in (23°C) kilogram per pascal second metre (kg/Pa · s · m) 1.459 29 E - 12 phot lumen per square metre (lm/m2) 1.000 000 °E + 04 pint (U.S. dry) cubic metre (m3) 4.731 765 E - 04 pint (U.S. liquid) cubic metre (m3) 4.731 765 E - 04 poise (absolute viscosity) pascal second (Pa · s) 1.000 000 °E - 01 pound (the voir apothecary) kilogram (kg) 4.335 924 E - 01 pound (ba voir apothecary) kilogram (kg) 3.732 417 E - 01 poundal newton (N) 1.382 550 E - 01 poundal/f12 pascal (Pa) 1.488 164 E + 00 poundal-f12 pascal (Pa) 1.488 164 E + 00 pound-force (lib) newton (N) 4.448 222 E + 00 quart (U.S. liquid) cubic metre (m3) 1.101
221 E - 03 quart (U.S. liquid) cubic metre (m3) 9.463 529 E - 04 read (radiation dose absorbed) gray (Gy) 1.000 000 °E - 02 rem sievert (Sv) slug/ft · s s | | | | | parsec metre (m) 3.085 678 E + 16 pernyweight kilogram (kg) 1.555 174 E − 03 perm (0°C) kilogram per pascal second metre squared (kg/Pa·s·m2) 5.721 35 E − 11 perm (23°C) kilogram per pascal second metre (kg/Pa·s·m2) 5.745 25 E − 11 perm · in (0°C) kilogram per pascal second metre (kg/Pa·s·m) 1.453 22 E − 12 perm · in (23°C) kilogram per pascal second metre (kg/Pa·s·m) 1.459 29 E − 12 phot lumen per square metre (lm/m2) 1.000 000 *E + 04 pint (U.S. dry) cubic metre (m3) 5.506 105 E − 04 pint (U.S. liquid) cubic metre (m3) 4.731 765 E − 04 pint (U.S. liquid) cubic metre (m3) 4.731 765 E − 04 pound (lb avoirdupois) kilogram (kg) 4.535 924 E − 01 pounda (troy or apothecary) kilogram (kg) 3.732 417 E − 01 poundal (roy or apothecary) kilogram (kg) 3.732 417 E − 01 poundal revitor (N) 1.382 550 E − 01 1 poundal revitor (kg/Pa·s) 1.488 164 E + 00 1 poundal revitor (kg/Pa·s) 1.488 164 E + 00 1 pou | | | | | pennyweight | oz (avoirdupois)/yd2 | kilogram per square metre (kg/m2) | $3.390\ 575\ \mathrm{E}-02$ | | Perm (0°C) Rilogram per pascal second metre squared (kg/Pa·s·m2) S.721 35 E - 11 Perm (23°C) Rilogram per pascal second metre squared (kg/Pa·s·m2) S.745 25 E - 11 Perm · in (0°C) Rilogram per pascal second metre squared (kg/Pa·s·m2) S.745 25 E - 11 Perm · in (0°C) Rilogram per pascal second metre (kg/Pa·s·m) I.453 22 E - 12 Perm · in (23°C) Rilogram per pascal second metre (kg/Pa·s·m) I.459 29 E - 12 Phot Ilumen per square metre (Im/m2) I.000 000 *E + 04 Pint (U.S. dry) Cubic metre (m3) S.506 105 E - 04 Pint (U.S. liquid) Cubic metre (m3) A.731 765 E - 04 Pint (U.S. liquid) Cubic metre (m3) A.731 765 E - 04 Pint (U.S. dry) Pascal second (Pa·s) I.000 000 *E - 01 Pound (Ib avoirdupois) Rilogram (kg) A.535 924 E - 01 Poundal (troy or apothecary) Rilogram (kg) A.535 924 E - 01 Poundal · s/ft2 Pascal (Pa) I.488 164 E + 00 Poundal · s/ft2 Pascal (Pa) I.488 164 E + 00 Poundal · s/ft2 Pascal (Pa) I.488 164 E + 00 Poundal · s/ft2 Pascal (Pa) I.488 164 E + 00 Poundal · s/ft2 Pascal (Pa) I.101 221 E - 03 Quart (U.S. dry) Cubic metre (m3) I.101 221 E - 03 Quart (U.S. liquid) Cubic metre (m3) I.000 000 *E - 02 Prem Sievert (Sv) | parsec | | | | Squared (kg/Pa·s·m2) 5.721 35 E - 11 | pennyweight | kilogram (kg) | $1.555\ 174\ \mathrm{E} - 03$ | | Perm (23°C) Rilogram per pascal second metre Squared (Kg/Pa·s·m2) S.745 25 E - 11 Perm·in (0°C) Rilogram per pascal second metre (kg/Pa·s·m) 1.453 22 E - 12 Perm·in (23°C) Rilogram per pascal second metre (kg/Pa·s·m) 1.459 29 E - 12 Phot lumen per square metre (lm/m2) 1.000 000 *E + 04 Pint (U.S. dry) cubic metre (m3) S.506 105 E - 04 Pint (U.S. liquid) cubic metre (m3) S.506 105 E - 04 Pint (U.S. liquid) pascal second (Pa·s) 1.000 000 *E - 01 Poise (absolute viscosity) pascal second (Pa·s) 1.000 000 *E - 01 Pound (Ito avoirdupois) Rilogram (kg) 4.535 924 E - 01 Poundal (roy or apothecary) Rilogram (kg) 3.732 417 E - 01 Poundal (roy or apothecary) pascal second (Pa·s) 1.488 164 E + 00 Poundal s·f12 pascal (Pa) 1.488 164 E + 00 Poundal roy (Pa·s) 1.000 000 *E - 02 Pascal second (Ray) | perm (0°C) | | | | Squared (kg/Pa · s · m2) 5.745 25 E - 11 | | squared (kg/Pa \cdot s \cdot m2) | $5.721\ 35\ \mathrm{E}-11$ | | $\begin{array}{c} \text{perm} \cdot \text{in} \ (0^{\circ}\text{C}) \\ \text{perm} \cdot \text{in} \ (23^{\circ}\text{C}) \\ \text{perm} \cdot \text{in} \ (23^{\circ}\text{C}) \\ \text{phot} \\ \text{lumen per pascal second metre} \\ \text{(kg/Pa \cdot s \cdot m)} \\ \text{(kg/Pa \cdot s \cdot m)} \\ \text{lumen per square metre} \ (\text{lm/m2}) \\ \text{lumen per square metre} \ (\text{lm/m2}) \\ \text{1.000} \ 000^{\circ} \ 8E - 04 \\ \text{pint} \ (\text{U.S. dry}) \\ \text{cubic metre} \ (\text{m3}) \\ \text{cubic metre} \ (\text{m3}) \\ \text{d.731} \ 765 \ E - 04 \\ \text{poisc} \ (\text{absolute viscosity}) \\ \text{pound} \ (\text{lba voirdupois}) \\ \text{pound} \ (\text{ltoy or a pothecary}) \\ \text{pound} \ (\text{ltoy or a pothecary}) \\ \text{poundal} \\ \text{sfl2} \\ \text{pascal second} \ (\text{Pa \cdot s}) \\ \text{1.488} \ 164 \ E + 00 \\ \text{poundal} \cdot \text{sfl2} \\ \text{pascal second} \ (\text{Pa} \cdot \text{s}) \\ \text{1.488} \ 164 \ E + 00 \\ \text{pound-force} \ (\text{lbf}) \\ \text{newton} \ (\text{N}) \\ \text{1.382} \ 550 \ E - 01 \\ \text{pound-force} \ (\text{lbf}) \\ \text{newton} \ (\text{N}) \\ \text{4.448} \ 222 \ E + 00 \\ \text{quart} \ (\text{U.S. dry}) \\ \text{quart} \ (\text{U.S. dry}) \\ \text{quart} \ (\text{U.S. liquid}) \\ \text{cubic metre} \ (\text{m3}) \\ \text{2.58} \ E - 04 \\ \text{rad} \ (\text{radiation dose absorbed}) \\ \text{rem} \\ \text{sievert} \ (\text{Sv}) \\ \text{1.000} \ 000 \ ^*E - 02 \\ \text{rhe} \\ \text{1 per pascal second} \ (\text{l/Pa \cdot s}) \\ \text{1.000} \ 000 \ ^*E - 02 \\ \text{rhe} \\ \text{1 per pascal second} \ (\text{l/Pa \cdot s}) \\ \text{1.000} \ 000 \ ^*E - 02 \\ \text{rhe} \\ \text{1 per pascal second} \ (\text{l/Pa \cdot s}) \\ \text{1.000} \ 000 \ ^*E - 04 \\ \text{second} \ (\text{sidereal}) \text{subj} \ \text{fils} \\ \text{side gram} \ (\text{kilogram} \ \text{per cubic metre} \ (\text{kg/m3}) \\ \text{3.335} \ 640 \ E - 10 \\ \text{stathmper} \\ \text{stathmper} \\ \text{henry} \ (\text{H}) \\ \text{8.987} \ 554 \ E + 11 \\ \text{statohm} \\ \text{ohn} \ (\Omega) \\ \text{9.97} \ 925 \ E + 02 \\ \text{stathmper} stathmp$ | perm (23°C) | | | | ClayPa · s · m 1.453 22 E - 12 | | squared (kg/Pa \cdot s \cdot m2) | 5.745 25 E – 11 | | Perm · in (23°C) Kilogram per pascal second metre (kg/Pa·s·m) 1.459 29 E - 12 | perm \cdot in (0°C) | kilogram per pascal second metre | | | (kg/Pa·s·m) | | $(kg/Pa \cdot s \cdot m)$ | $1.453\ 22\ E-12$ | | phot lumen per square metre (lm/m2) 1.000 000 *E + 04 pint (U.S. dry) cubic metre (m3) 5.506 105 E - 04 poise (absolute viscosity) pascal second (Pa·s) 1.000 000 *E - 01 pound (lb avoirdupois) kilogram (kg) 4.535 924 E - 01 poundal (lb avoirdupois) kilogram (kg) 3.732 417 E - 01 poundal (lf2) pascal (Pa) 1.488 164 E + 00 poundal/ft2 pascal (Pa) 1.488 164 E + 00 poundal · s/ft2 pascal second (Pa·s) 1.488 164 E + 00 poundal · s/ft2 pascal second (Pa·s) 1.488 164 E + 00 poundal · s/ft2 pascal second (Pa·s) 1.488 164 E + 00 poundal · s/ft2 pascal second (Pa·s) 1.488 164 E + 00 poundal · s/ft2 pascal second (Pa·s) 1.101 221 E - 03 quart (U.S. dry) cubic metre (m3) 1.101 221 E - 03 quart (U.S. liquid) cubic metre (m3) 9.463 529 E - 04 rad (radiation dose absorbed) gray (Gy) 1.000 000 *E - 02 rem sievert (Sv) 1.000 000 *E - 02 rhe 1 per pascal second (1/Pa·s) 1.000 000 *E - 02 rhe 1 per pascal second (1/Pa·s) 1.000 000 *E - 01 second (angle) radian (rad) 4.848 137 E - 06 second (sidereal) second (s) 9.972 696 E - 01 slug kilogram (kg) 1.459 390 E + 01 slug/ft3 kilogram per cubic metre (kg/m3) 5.153 788 E + 02 statamper ampere (A) 3.335 640 E - 10 statarad farad (F) 1.112 650 E - 12 stathenry henry (H) 8.987 554 E + 11 To convert from to | perm · in (23°C) | kilogram per pascal second metre | | | pint (U.S. dry) | | $(kg/Pa \cdot s \cdot m)$ | $1.459\ 29\ E-12$ | | pint (U.S. liquid) cubic metre (m3) 4.731 765 E - 04 poise (absolute viscosity) pascal second (Pa·s) 1.000 000 *E - 01 pound (Ib avoirdupois) kilogram (kg) 4.535 924 E - 01 pound (troy or apothecary) kilogram (kg) 3.732 417 E - 01 poundal newton (N) 1.382 550 E - 01 poundal/ft2 pascal (Pa) 1.488 164 E + 00 pound-force (lbf) newton (N) 4.488 164 E + 00 pound-force (lbf) newton (N) 4.448 222 E + 00 quart (U.S. dry) cubic metre (m3) 1.101 221 E - 03 quart (U.S. liquid) cubic metre (m3) 9.463 529 E - 04 rad (radiation dose absorbed) gray (Gy) 1.000 000 *E - 02 rem sievert (Sv) 00 | phot | lumen per square metre (lm/m2) | 1.000 000 *E + 04 | | poise (absolute viscosity) pascal second (Pa·s) 1.000 000 *E - 01 pound (Ib avoirdupois) kilogram (kg) 4.535 924 E - 01 pound (troy or apothecary) kilogram (kg) 3.732 417 E - 01 poundal poundal poundal poundal poundal fl2 newton (N) 1.382 550 E - 01 poundal/fl2 poundal · s/ft2 pascal (Pa) 1.488 164 E + 00 poundal · s/ft2 pound-force (lbf) newton (N) 4.448 222 E + 00 quart (U.S. dry) cubic metre (m3) 1.101 221 E - 03 quart (U.S. liquid) cubic metre (m3) 9.463 529 E - 04 rad (radiation dose absorbed) gray (Gy) 1.000 000 *E - 02 rem sievert (Sv) 1.000 000 *E - 02 rem 1 per pascal second (1/Pa·s) 1.000 000 *E - 02 rem 1 per pascal second (1/Pa·s) 1.000 000 *E - 01 second (angle) radian (rad) 4.848 137 E - 06 second (sidereal) second (signam (kg) 1.459 390 E + 01 slug/ft · s pascal second (Pa·s) 4.788 026 E + 01 slug/ft3 kilogram per cubic metre (kg/m3) 5.153 788 E + 02 statmpere < | pint (U.S. dry) | cubic metre (m3) | $5.506\ 105\ E-04$ | | Pound (lb avoirdupois) Kilogram (kg) 4.535 924 E - 01 Pound (troy or apothecary) Kilogram (kg) 3.732 417 E - 01 Poundal | pint (U.S. liquid) | cubic metre (m3) | 4.731765 E - 04 | | pound (troy or apothecary) kilogram (kg) 3.732 417 E - 01 poundal newton (N) 1.382 550 E - 01 poundal/ft2 pascal (Pa) 1.488 164 E + 00 poundal · s/ft2 pascal second (Pa · s) 1.488 164 E + 00 pound-force (lbf) newton (N) 4.448 222 E + 00 quart (U.S. dry) cubic metre (m3) 1.101 221 E - 03 quart (U.S. liquid) cubic metre (m3) 9.463 529 E - 04 rad (radiation dose absorbed) gray (Gy) 1.000 000 *E - 02 rem sievert (Sv) 1.000 000 *E - 02 rhe 1 per pascal second (1/Pa · s) 1.000 000 *E + 01 roentgen coulomb per kilogram (C/kg) 2.58 E - 04 second (angle) radian (rad) 4.848 137 E - 06 second (sidereal) second (s) 9.972 696 E - 01 slug kilogram (kg) 1.459 390 E + 01 slug/ft · s pascal second (Pa · s) 4.788 026 E + 01 slug/ft3 kilogram per cubic metre (kg/m3) 5.153 788 E + 02 statampere ampere (A) 3.335 640 E - 10 statfarad farad (F) 1.112 650 E - 12 statthenry henry (H) 8.987 554 E + 11 To convert from to | poise (absolute viscosity) | pascal second (Pa · s) | $1.000\ 000\ *E -
01$ | | poundal poundal/ft2 poundal/ft2 poundal s/ft2 poundal s/ft2 poundal s/ft2 pascal (Pa) pascal (Pa) pascal second (Pa·s) 1.488 164 E + 00 pascal second (Pa·s) 1.101 221 E - 03 quart (U.S. dry) cubic metre (m3) 1.101 221 E - 03 quart (U.S. liquid) cubic metre (m3) 9.463 529 E - 04 rad (radiation dose absorbed) gray (Gy) 1.000 000 *E - 02 rem sievert (Sv) 1.000 000 *E - 02 rem sievert (Sv) 1.000 000 *E - 02 rem cond(gray) 1.000 000 *E - 02 rem sievert (Sv) 0 | pound (lb avoirdupois) | kilogram (kg) | 4.535924 E - 01 | | poundal/ft2 pascal (Pa) 1.488 164 E + 00 pounds of street (lbf) pascal second (Pa · s) 1.488 164 E + 00 pound-force (lbf) newton (N) 4.448 222 E + 00 quart (U.S. dry) cubic metre (m3) 1.101 221 E - 03 quart (U.S. liquid) cubic metre (m3) 9.463 529 E - 04 rad (radiation dose absorbed) gray (Gy) 1.000 000 *E - 02 rem sievert (Sv) 1.000 000 *E - 02 rhe 1 per pascal second (1/Pa · s) 1.000 000 *E - 02 rhe 1 per pascal second (1/Pa · s) 1.000 000 *E - 02 second (angle) radian (rad) 4.848 137 E - 06 second (sidereal) second (s) 9.972 696 E - 01 slug kilogram (kg) 1.459 390 E + 01 slug/ft · s pascal second (Pa · s) 4.788 026 E + 01 slug/ft3 kilogram per cubic metre (kg/m3) 5.153 788 E + 02 statampere ampere (A) 3.335 640 E - 10 statcoulomb coulomb (C) 3.335 640 E - 10 statfarad farad (F) 1.112 650 E - 12 statholm < | pound (troy or apothecary) | kilogram (kg) | 3.732417 E - 01 | | poundal · s/ft2 pascal second (Pa · s) 1.488 164 E + 00 pound-force (lbf) newton (N) 4.448 222 E + 00 quart (U.S. dry) cubic metre (m3) 1.101 221 E - 03 quart (U.S. liquid) cubic metre (m3) 9.463 529 E - 04 rad (radiation dose absorbed) gray (Gy) 1.000 000 *E - 02 rem sievert (Sv) 1.000 000 *E - 02 rhe 1 per pascal second (1/Pa · s) 1.000 000 *E + 01 roentgen coulomb per kilogram (C/kg) 2.58 E - 04 second (angle) radian (rad) 4.848 137 E - 06 second (sidereal) second (s) 9.972 696 E - 01 slug kilogram (kg) 1.459 390 E + 01 slug/ft3 kilogram (kg) 1.459 390 E + 01 slug/ft3 kilogram per cubic metre (kg/m3) 5.153 788 E + 02 statampere ampere (A) 3.335 640 E - 10 statfarad farad (F) 1.112 650 E - 12 stathenry henry (H) 8.987 554 E + 11 To convert from to Multiply by stathon siemens (S) 1.112 | poundal | newton (N) | 1.382550 E - 01 | | pound-force (lbf) newton (N) 4.448 222 E + 00 quart (U.S. dry) cubic metre (m3) 1.101 221 E - 03 quart (U.S. liquid) cubic metre (m3) 9.463 529 E - 04 rad (radiation dose absorbed) gray (Gy) 1.000 000 *E - 02 rem sievert (Sv) 1.000 000 *E - 02 rhe 1 per pascal second (1/Pa · s) 1.000 000 *E + 01 roentgen coulomb per kilogram (C/kg) 2.58 E - 04 second (angle) radian (rad) 4.848 137 E - 06 second (sidereal) second (si 9.972 696 E - 01 slug kilogram (kg) 1.459 390 E + 01 slug/ft3 kilogram per cubic metre (kg/m3) 5.153 788 E + 02 statampere ampere (A) 3.335 640 E - 10 statcoulomb coulomb (C) 3.335 640 E - 10 statfarad farad (F) 1.112 650 E - 12 stathenry henry (H) 8.987 554 E + 11 To convert from to Multiply by stathohm ohm (Ω) 8.987 554 E + 11 statohhm ohm (Ω) 2.997 925 E + 02 <td>poundal/ft2</td> <td>pascal (Pa)</td> <td>1.488 164 E + 00</td> | poundal/ft2 | pascal (Pa) | 1.488 164 E + 00 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | poundal · s/ft2 | pascal second (Pa · s) | $1.488\ 164\ E + 00$ | | quart (U.S. liquid) cubic metre (m3) 9.463 529 E - 04 rad (radiation dose absorbed) gray (Gy) 1.000 000 *E - 02 rem sievert (Sv) 1.000 000 *E - 02 rhe 1 per pascal second (1/Pa · s) 1.000 000 *E + 01 roentgen coulomb per kilogram (C/kg) 2.58 E - 04 second (angle) radian (rad) 4.848 137 E - 06 second (sidereal) second (s) 9.972 696 E - 01 slug kilogram (kg) 1.459 390 E + 01 slug/ft · s pascal second (Pa · s) 4.788 026 E + 01 slug/ft3 kilogram per cubic metre (kg/m3) 5.153 788 E + 02 statampere ampere (A) 3.335 640 E - 10 statcoulomb coulomb (C) 3.335 640 E - 10 statfarad farad (F) 1.112 650 E - 12 stathenry henry (H) 8.987 554 E + 11 To convert from to Multiply by statchm ohm (Ω) 8.987 554 E + 11 statchm ohm (Ω) 2.997 925 E + 02 | pound-force (lbf) | newton (N) | 4.448 222 E + 00 | | rad (radiation dose absorbed) gray (Gy) $1.000\ 000\ *E - 02$ rem sievert (Sv) $1.000\ 000\ *E - 02$ rhe 1 per pascal second (1/Pa · s) $1.000\ 000\ *E + 01$ roentgen coulomb per kilogram (C/kg) $2.58\ E - 04$ second (angle) radian (rad) $4.848\ 137\ E - 06$ second (sidereal) second (s) $9.972\ 696\ E - 01$ slug kilogram (kg) $1.459\ 390\ E + 01$ slug/ft3 kilogram per cubic metre (kg/m3) $5.153\ 788\ E + 02$ statampere ampere (A) $3.335\ 640\ E - 10$ statcoulomb coulomb (C) $3.335\ 640\ E - 10$ statfarad farad (F) $1.112\ 650\ E - 12$ stathenry henry (H) $8.987\ 554\ E + 11$ To convert from to Multiply by statohm ohm (Ω) $8.987\ 554\ E + 11$ statohm ohm (Ω) $8.987\ 554\ E + 11$ statoylt volt (V) $2.997\ 925\ E + 02$ | quart (U.S. dry) | cubic metre (m3) | 1.101 221 E – 03 | | rem sievert (Sv) $1.000\ 000\ *E - 02$ rhe 1 per pascal second (1/Pa · s) $1.000\ 000\ *E + 01$ roentgen coulomb per kilogram (C/kg) $2.58\ E - 04$ second (angle) radian (rad) $4.848\ 137\ E - 06$ second (sidereal) second (s) $9.972\ 696\ E - 01$ slug kilogram (kg) $1.459\ 390\ E + 01$ slug/ft · s pascal second (Pa · s) $4.788\ 026\ E + 01$ slug/ft3 kilogram per cubic metre (kg/m3) $5.153\ 788\ E + 02$ statampere ampere (A) $3.335\ 640\ E - 10$ statcoulomb coulomb (C) $3.335\ 640\ E - 10$ statfarad farad (F) $1.112\ 650\ E - 12$ stathenry henry (H) $8.987\ 554\ E + 11$ To convert from to Multiply by statohm ohm (Ω) $8.987\ 554\ E + 11$ statoht volt (V) $2.997\ 925\ E + 02$ | quart (U.S. liquid) | cubic metre (m3) | $9.463\ 529\ E-04$ | | rhe 1 per pascal second (1/Pa · s) $1.000000 *E + 01$ roentgen coulomb per kilogram (C/kg) 2.58 E - 04 second (angle) radian (rad) $4.848137E - 06$ second (sidereal) second (s) $9.972696E - 01$ slug kilogram (kg) $1.459390E + 01$ slug/ft · s pascal second (Pa · s) $4.788026E + 01$ slug/ft3 kilogram per cubic metre (kg/m3) $5.153788E + 02$ statampere ampere (A) $3.335640E - 10$ statcoulomb coulomb (C) $3.335640E - 10$ statfarad farad (F) $1.112650E - 12$ stathenry henry (H) $8.987554E + 11$ To convert from to Multiply by statmho siemens (S) $1.112650E - 12$ statohm ohm (Ω) $8.987554E + 11$ statvolt volt (V) $2.997925E + 02$ | rad (radiation dose absorbed) | gray (Gy) | 1.000 000 *E - 02 | | roentgen coulomb per kilogram (C/kg) 2.58 E - 04 second (angle) radian (rad) 4.848 137 E - 06 second (sidereal) second (s) 9.972 696 E - 01 slug kilogram (kg) 1.459 390 E + 01 slug/ft · s pascal second (Pa · s) 4.788 026 E + 01 slug/ft3 kilogram per cubic metre (kg/m3) 5.153 788 E + 02 statampere ampere (A) 3.335 640 E - 10 statcoulomb coulomb (C) 3.335 640 E - 10 statfarad farad (F) 1.112 650 E - 12 stathenry henry (H) 8.987 554 E + 11 To convert from to Multiply by statnho siemens (S) 1.112 650 E - 12 statohm ohm (Ω) 8.987 554 E + 11 statvolt volt (V) 2.997 925 E + 02 | rem | sievert (Sv) | $1.000\ 000\ *E - 02$ | | second (angle) radian (rad) 4.848 137 E – 06 second (sidereal) second (s) 9.972 696 E – 01 slug kilogram (kg) 1.459 390 E + 01 slug/ft · s pascal second (Pa · s) 4.788 026 E + 01 slug/ft3 kilogram per cubic metre (kg/m3) 5.153 788 E + 02 statampere ampere (A) 3.335 640 E – 10 statcoulomb coulomb (C) 3.335 640 E – 10 statfarad farad (F) 1.112 650 E – 12 stathenry henry (H) 8.987 554 E + 11 To convert from to Multiply by statnho siemens (S) 1.112 650 E – 12 statohm ohm (Ω) 8.987 554 E + 11 statvolt volt (V) 2.997 925 E + 02 | rhe | 1 per pascal second (1/Pa · s) | 1.000 000 *E + 01 | | second (sidereal) second (s) 9.972 696 E - 01 slug kilogram (kg) 1.459 390 E + 01 slug/ft · s pascal second (Pa · s) 4.788 026 E + 01 slug/ft3 kilogram per cubic metre (kg/m3) 5.153 788 E + 02 statampere ampere (A) 3.335 640 E - 10 statcoulomb coulomb (C) 3.335 640 E - 10 statfarad farad (F) 1.112 650 E - 12 stathenry henry (H) 8.987 554 E + 11 To convert from to Multiply by statnho siemens (S) 1.112 650 E - 12 statohm ohm (Ω) 8.987 554 E + 11 statvolt volt (V) 2.997 925 E + 02 | roentgen | coulomb per kilogram (C/kg) | 2.58 E - 04 | | second (sidereal) second (s) 9.972 696 E - 01 slug kilogram (kg) 1.459 390 E + 01 slug/ft · s pascal second (Pa · s) 4.788 026 E + 01 slug/ft3 kilogram per cubic metre (kg/m3) 5.153 788 E + 02 statampere ampere (A) 3.335 640 E - 10 statcoulomb coulomb (C) 3.335 640 E - 10 statfarad farad (F) 1.112 650 E - 12 stathenry henry (H) 8.987 554 E + 11 To convert from to Multiply by statnho siemens (S) 1.112 650 E - 12 statohm ohm (Ω) 8.987 554 E + 11 statvolt volt (V) 2.997 925 E + 02 | second (angle) | radian (rad) | 4.848 137 E – 06 | | slug kilogram (kg) 1.459 390 E + 01 slug/ft · s pascal second (Pa · s) 4.788 026 E + 01 slug/ft3 kilogram per cubic metre (kg/m3) 5.153 788 E + 02 statampere ampere (A) 3.335 640 E - 10 statcoulomb coulomb (C) 3.335 640 E - 10 statfarad farad (F) 1.112 650 E - 12 stathenry henry (H) 8.987 554 E + 11 To convert from to Multiply by statnho siemens (S) 1.112 650 E - 12 statohm ohm (Ω) 8.987 554 E + 11 statvolt volt (V) 2.997 925 E + 02 | | | $9.972\ 696\ E-01$ | | slug/ft · s pascal second (Pa · s) $4.788\ 026\ E + 01$ slug/ft3 kilogram per cubic metre (kg/m3) $5.153\ 788\ E + 02$ statampere ampere (A) $3.335\ 640\ E - 10$ statcoulomb coulomb (C) $3.335\ 640\ E - 10$ statfarad farad (F) $1.112\ 650\ E - 12$ stathenry henry (H) $8.987\ 554\ E + 11$ To convert from to Multiply by statmho siemens (S) $1.112\ 650\ E - 12$ statohm ohm (Ω) $8.987\ 554\ E + 11$ statvolt volt (V) $2.997\ 925\ E + 02$ | , | | 1.459 390 E + 01 | | slug/ft3 kilogram per cubic metre (kg/m3) $5.153\ 788\ E + 02$ statampere ampere (A) $3.335\ 640\ E - 10$ statcoulomb coulomb (C) $3.335\ 640\ E - 10$ statfarad farad (F) $1.112\ 650\ E - 12$ stathenry henry (H) $8.987\ 554\ E + 11$ To convert from to Multiply by statmho siemens (S) $1.112\ 650\ E - 12$ statohm ohm (Ω) $8.987\ 554\ E + 11$ statvolt volt (V)
$2.997\ 925\ E + 02$ | | | 4.788 026 E + 01 | | statampere ampere (A) $3.335 640 E - 10$ statcoulomb coulomb (C) $3.335 640 E - 10$ statfarad farad (F) $1.112 650 E - 12$ stathenry henry (H) $8.987 554 E + 11$ To convert from to Multiply by statmho siemens (S) $1.112 650 E - 12$ statohm ohm (Ω) $8.987 554 E + 11$ statvolt volt (V) $2.997 925 E + 02$ | <u> </u> | | 5.153 788 E + 02 | | statcoulomb coulomb (C) $3.335 640 E - 10$ statfarad farad (F) $1.112 650 E - 12$ stathenry henry (H) $8.987 554 E + 11$ To convert from to Multiply by statmho siemens (S) $1.112 650 E - 12$ statohm ohm (Ω) $8.987 554 E + 11$ statvolt volt (V) $2.997 925 E + 02$ | <u> </u> | C 1 (C) | | | statfarad farad (F) $1.112\ 650\ E-12$ stathenry henry (H) $8.987\ 554\ E+11$ To convert from to Multiply by statmho siemens (S) $1.112\ 650\ E-12$ statohm ohm (Ω) $8.987\ 554\ E+11$ statvolt volt (V) $2.997\ 925\ E+02$ | | | 3.335640 E - 10 | | stathenry henry (H) $8.987554E+11$ To convert from to Multiply by statmho siemens (S) $1.112650E-12$ statohm ohm (Ω) $8.987554E+11$ statvolt volt (V) $2.997925E+02$ | statfarad | * / | | | statmho siemens (S) $1.112\ 650\ E-12$ statohm ohm (Ω) $8.987\ 554\ E+11$ statvolt volt (V) $2.997\ 925\ E+02$ | stathenry | | 8.987 554 E + 11 | | statohm ohm (Ω) 8.987 554 E + 11 statvolt volt (V) 2.997 925 E + 02 | To convert from | to | Multiply by | | statohm ohm (Ω) 8.987 554 E + 11 statvolt volt (V) 2.997 925 E + 02 | statmho | siemens (S) | 1.112 650 E – 12 | | | statohm | | 8.987 554 E + 11 | | stere cubic metre (m ³) $1.000\ 000\ *E + 00$ | statvolt | | | | | stere | cubic metre (m ³) | 1.000 000 *E + 00 | 20 June 2019 Page **31** of **35** ## Units of Measure To Be Used In Air And Ground Operations | stilb | candela per square metre (cd/m²) | 1.000 000 *E + 04 | |---------------------------------|--|-------------------------------| | stokes (kinematic viscosity) | metre squared per second (m ² /s) | $1.000\ 000\ *E - 04$ | | therm | joule (J) | 1.055 056 E + 08 | | ton (assay) | kilogram (kg) | 2.916667 E - 02 | | ton (long, 2 240 lb) | kilogram (kg) | $1.016\ 047\ \mathrm{E} + 03$ | | ton (metric) | kilogram (kg) | $1.000\ 000\ *E + 03$ | | ton (nuclear equivalent of TNT) | joule (J) | 4.184 E + 09 | | ton (refrigeration) | watt (W) | $3.516800\mathrm{E}+03$ | | ton (register) | cubic metre (m ³) | $2.831\ 685\ E + 00$ | | ton (short, 2 000 lb) | kilogram (kg) | $9.071~847~\mathrm{E} + 02$ | | ton (long)/yd ³ | kilogram per cubic metre (kg/m³) | 1.328939 E + 03 | | ton (short)/h | kilogram per second (kg/s) | 2.519958 E - 01 | | ton-force (2 000 lbf) | newton (N) | 8.896 444 E + 03 | | tonne | kilogram (kg) | 1.000 000 *E + 03 | | torr (mm Hg, 0°C) | pascal (Pa) | 1.333 22 E + 02 | | unit pole | weber (Wb) | $1.256\ 637\ E-07$ | | $W \cdot h$ | joule (J) | 3.600 000 *E + 03 | | $W \cdot s$ | joule (J) | 1.000 000 *E + 00 | | W/cm ² | watt per square metre (W/m ²) | 1.000 000 *E + 04 | | W/in ² | watt per square metre (W/m²) | $1.550\ 003\ \mathrm{E} + 03$ | | yard | metre (m) | 9.144 000 *E - 01 | | yd^2 | square metre (m ²) | $8.361\ 274\ \mathrm{E}-01$ | | yd^3 | cubic metre (m ³) | 7.645549 E - 01 | | yd³/min | cubic metre per second (m ³ /s) | $1.274\ 258\ \mathrm{E} - 02$ | | year (calendar) | second (s) | $3.153\ 600\ \mathrm{E} + 07$ | | year (sidereal) | second (s) | 3.155 815 E + 07 | | year (tropical) | second (s) | 3.155 693 E + 07 | ## Table C-2. Temperature conversion formulae | To convert from | to | Use formula | |---|--|--| | Celsius temperature (t° _C) | Kelvin temperature (t_K) | $t_{\rm K} = t^{\circ}_{\rm C} + 273.15$ | | Fahrenheit temperature (t° _F) | Celsius temperature (t° _C) | $t^{\circ}_{C} = (t^{\circ}_{F} - 32)/1.8$ | | Fahrenheit temperature (t° _F) | Kelvin temperature (t _K) | $t_K = (t^{\circ}_F + 459.67)/1.8$ | | Kelvin temperature (t _K) | Celsius temperature (t°C) | $t^{\circ}_{C} = t_{K} - 273.15$ | | Rankine temperature (t° _R) | Kelvin temperature (t _K) | $t_{\rm K}=t^{\circ}_{\rm R}/1.8$ | 20 June 2019 Page **32** of **35** Units of Measure To Be Used In Air And Ground Operations ## **Appendix D. Coordinated Universal Time** - Coordinated Universal Time (UTC) has now replaced Greenwich Mean Time (GMT) as the accepted international standard for clock time. It is the basis for civil time in many States and is also the time used in the worldwide time signal broadcasts used in aviation. The use of UTC is recommended by such bodies as the General Conference on Weights and Measures (CGPM), the International Radio Consultative Committee (CCIR) and the World Administration Radio Conference (WARC). - 2. The basis for all clock time is the time of apparent rotation of the sun. This is, however, a variable quantity which depends, among other things, on where it is measured on earth. A mean value of this time, based upon measurements in a number of places on the earth, is known as Universal Time. A different time scale, based upon the definition of the second, is known as International Atomic Time (TAI). A combination of these two scales results in Coordinated Universal Time. This consists of TAI adjusted as necessary by the use of leap seconds to obtain a close approximation (always within 0.5 seconds) of Universal Time. 20 June 2019 Page **33** of **35** Units of Measure To Be Used In Air And Ground Operations ## Appendix E. Presentation of Date and Time in All-Numeric Form #### 1. Introduction The International Organization for Standardization (ISO) Standards 2014 and 3307 specify the procedures for writing the date and time in all-numeric form and ICAO will be using these procedures in its documents where appropriate in the future. #### 2. Presentation of date Where dates are presented in all-numeric form, ISO 2014 specifies that the sequence year- month-day should be used. The elements of the date should be: - four digits to represent the year, except that the century digits may be omitted where no possible confusion could arise from such an omission. There is value in using the century digits during the period of familiarization with the new format to make it clear that the new order of elements is being used; - two digits to represent the month; - two digits to represent the day. Where it is desired to separate the elements for easier visual understanding, only a space or a hyphen should be used as a separator. As an example, 25 August 1983 may be written as: 19830825 or 830825 or 1983-08-25 or 83-08-25 or 1983 08 25 or 83 08 25. It should be emphasized that the ISO sequence should only be used where it is intended to use an all-numeric presentation. Presentations using a combination of figures and words may still be used if required (e.g. 25 August 1983). #### 3. Presentation of time - 3.1 Where the time of day is to be written in all-numeric form, ISO 3307 specifies that the sequence hours-minutesseconds should be used. - 3.2 Hours should be represented by two digits from 00 to 23 in the 24-hour timekeeping system and may be followed either by decimal fractions of an hour or by minutes and seconds. Where decimal fractions of an hour are used, the normal decimal separator should be used followed by the number of digits necessary to provide the required accuracy. - 3.3 Minutes should likewise be represented by two digits from 00 to 59 followed by either decimal fractions of a minute or by seconds. - 3.4 Seconds should also be represented by two digits from 00 to 59 and followed by decimal fractions of a second if required. 20 June 2019 Page **34** of **35** #### Units of Measure To Be Used In Air And Ground Operations 3.5 Where it is necessary to facilitate visual understanding a colon should be used to separate hours and minutes and minutes and seconds. For example, 20 minutes and 18 seconds past 3 o'clock in the afternoon may be written as: 152018 or 15:20:18 in hours, minutes and seconds or 1520.3 or 15:20.3 in hours, minutes and decimal fractions of a minute or 15.338 in hours and decimal fractions of an hour. #### 4. Combination date and time groups This presentation lends itself to a uniform method of writing date and time together where necessary. In such cases, the sequence of elements year-month-day-hour-minute-second should be used. It may be noted that not all the elements need be used in every case — in a typical application, for example, only the elements day-hour-minute might be used. — END — 20 June 2019 Page **35** of **35**